首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coltman and Slate (2003) recently performed a meta-analysis on studies that investigated the association between genetic variation at microsatellite loci and phenotypic trait variation. One factor not explicitly addressed in their meta-analysis is the actual estimation of genome-wide heterozygosity via molecular markers. Many authors still associate marker-estimated heterozygosity with genome-wide heterozygosity, despite allozyme-based evidence that such correlations are usually very weak or nonexistent. Here, we show that genome-wide heterozygosity is poorly estimated not only by allozymes but also by microsatellite loci and by single-nucleotide polymorphisms (SNPs). Thus, associations between fitness (or other phenotypes) and heterozygosity should be established firmly on causative factors and not on simple correlations.  相似文献   

2.
Secondary sexual traits, such as horns in ungulates, may be good indicators of genetic quality because they are costly to develop. Genetic effects on such traits may be revealed by examining correlations between multilocus heterozygosity (MLH) and trait value. Correlations between MLH and fitness traits, termed heterozygosity-fitness correlations (HFC), may reflect inbreeding depression or associative overdominance of neutral microsatellite loci with loci directly affecting fitness traits. We investigated HFCs for horn growth, body mass and faecal counts of nematode eggs in wild Alpine ibex (Capra ibex). We also tested if individual inbreeding coefficients (f') estimated from microsatellite data were more strongly correlated with fitness traits than MLH. MLH was more strongly associated with trait variation than f'. We found HFC for horn growth but not for body mass or faecal counts of nematode eggs. The effect of MLH on horn growth was age-specific. The slope of the correlation between MLH and yearly horn growth changed from negative to positive as males aged, in accordance with the mutation accumulation theory of the evolution of senescence. Our results suggest that the horns of ibex males are an honest signal of genetic quality.  相似文献   

3.
Previous studies with rainbow trout (Oncorhynchus mykiss) have shown that increased heterozygosity at allozyme loci is correlated with several phenotypic traits associated with fitness. We expected to find a similar effect of heterozygosity at other nuclear loci if these associations are due to loci in linkage disequilibrium with the allozyme loci (i.e., associative overdominance), rather than the allozymes themselves. We examined the association between multiple locus heterozygosity and condition factor at 10 allozyme and 10 microsatellite loci. Individuals that were more heterozygous at allozyme loci had significantly greater condition factor in two hatchery cohorts of rainbow trout (1996 P = 0.006; 1997 P < 0.001). In contrast, there was no evidence at microsatellite loci that increased heterozygosity was associated with greater condition factor. Our results suggest that the observed relationship between heterozygosity at allozyme loci and condition factor in rainbow trout appears to be due to the allozyme loci themselves, rather than associative overdominance. We cannot, however, rule out that differences in the mutation process between allozymes and microsatellites may be responsible for these observations. Regardless of the underlying mechanism, these results support the view that allozymes and microsatellites are differentially affected by natural selection.  相似文献   

4.
The relationship between heterozygosity at genetic markers (six allozyme and eight microsatellite loci), and fluctuating asymmetry (FA), length and weight was investigated in two samples of Atlantic salmon (Salmo salar L.) with different timings of first active feeding (early (EA) and late (LA) salmon). This trait had previously been related to fitness. EA fish show smaller values of FA, are longer, heavier and are more heterozygous at allozyme loci than are conspecific LA fish. Also within both samples, heterozygosity at allozyme loci was inversely related to FA and was positively related to weight and length. However, no significant differences in microsatellite diversity (heterozygosity and mean d2 measurements) were observed between samples (EA vs LA). Furthermore, no association was observed between the variability at microsatellite loci and FA, weight or length within each sample. These results suggest that allozyme loci, in themselves, influence fitness components, rather than associations arising from associative overdominance.  相似文献   

5.
Studies in a multitude of taxa have described a correlation between heterozygosity and fitness and usually conclude that this is evidence for inbreeding depression. Here, we have used multilocus heterozygosity (MLH) estimates from 15 microsatellite markers to show evidence of heterozygosity-fitness correlations (HFCs) in a long-distance migratory bird, the light-bellied Brent goose. We found significant, positive heterozygosity-heterozygosity correlations between random subsets of the markers we employed, and no evidence that a model containing all loci as individual predictors in a multiple regression explained significantly more variation than a model with MLH as a single predictor. Collectively, these results lend support to the hypothesis that the HFCs we have observed are a function of inbreeding depression. However, we do find that fitness correlations are only detectable in years where population-level productivity is high enough for the reproductive asymmetry between high and low heterozygosity individuals to become apparent. We suggest that lack of evidence of heterozygosity-fitness correlations in animal systems may be because heterozygosity is a poor proxy measure of inbreeding, especially when employing low numbers of markers, but alternatively because the asymmetries between individuals of different heterozygosities may only be apparent when environmental effects on fitness are less pronounced.  相似文献   

6.
Females in many species engage in matings with males that are not their social mates. These matings are predicted to increase offspring heterozygosity and fitness, and thereby prevent the deleterious effects of inbreeding. We tested this hypothesis in a cooperative breeding mammal, the common mole-rat Cryptomys hottentotus hottentotus. Laboratory-based studies suggested a system of strict social monogamy, while recent molecular studies indicate extensive extra-pair paternity despite colonies being founded by an outbred pair. Our data show that extra-pair and within-colony breeding males differed significantly in relatedness to breeding females, suggesting that females may gain genetic benefits from breeding with non-resident males. Extra-colony male mating success was not based on heterozygosity criteria at microsatellite loci; however, litters sired by extra-colony males exhibited increased heterozygosity. While we do not have the data that refute a relationship between individual levels of inbreeding (Hs) and fitness, we propose that a combination of both male and female factors most likely explain the adaptive significance of extra-pair mating whereby common mole-rats maximize offspring fitness by detecting genetic compatibility with extra-pair mates at other key loci, but it is not known which sex controls these matings.  相似文献   

7.
The effect of MHC polymorphism on individual fitness variation in the wild remains equivocal; however, much evidence suggests that heterozygote advantage is a major determinant. To understand the contribution of MHC polymorphism to individual disease resistance or susceptibility in natural populations, we investigated two MHC class II B loci, DQB and DRB, in the New Zealand sea lion (NZSL, Phocarctos hookeri). The NZSL is a threatened species which is unusually susceptible to death by bacterial infection at an early age; it has suffered three bacterial induced epizootics resulting in high mortality levels of young pups since 1997. The MHC DQB and DRB haplotypes of dead NZSL pups with known cause of death (bacteria, enteritis or trauma) were sequenced and reconstructed, compared to pups that survived beyond 2 months of age, and distinct MHC DRB allele frequency and genotype differences were identified. Two findings were striking: (i) one DRB allele was present only in dead pups, and (ii) one heterozygous DRB genotype, common in live pups, was absent from dead pups. These results are consistent with some functional relationship with these variants and suggest heterozygote advantage is operating at DRB. We found no association between heterozygosity and fitness at 17 microsatellite loci, indicating that general heterozygosity is not responsible for the effect on fitness detected here. This result may be a consequence of recurrent selection by multiple pathogen assault over recent years and highlights the importance of heterozygote advantage at MHC as a potential mechanism for fitness differences in wild populations.  相似文献   

8.
We analysed variation at 14 nuclear microsatellite loci to assess the genetic structure, relatedness, and paternity of polygynous Jamaican fruit-eating bats. A total of 84 adults captured in two caves exhibited little genetic differentiation between caves (FST = 0.008). Average relatedness among adult females in 10 harem groups was very low (R = 0.014 +/- 0.011), providing no evidence of harem structure. Dominant and subordinate males shared paternity in large groups, while dominant and satellite males shared paternity in smaller groups. However, our results suggest that male rank influences paternity. Dominant males fathered 69% of 40 offspring, followed by satellite (22%) and subordinate males (9%). Overall adult male bats are not closely related, however, in large harem groups we found that subordinate and dominant males exhibited relatedness values consistent with a father-offspring relationship. Because dominant and subordinate males also sired all the pups in large groups, we propose that their association provides inclusive fitness to them.  相似文献   

9.
Adult survival is perhaps the fitness parameter most important to population growth in long-lived species. Intrinsic and extrinsic covariates of survival are therefore likely to be important drivers of population dynamics. We used long-term mark-recapture data to identify genetic, individual and environmental covariates of local survival in a natural population of mountain brushtail possums (Trichosurus cunninghami). Rainfall and intra-individual diversity at microsatellite DNA markers were associated with increased local survival of adults and juveniles. We contrasted the performance of several microsatellite heterozygosity measures, including internal relatedness (IR), homozygosity by loci (HL) and the mean multilocus estimate of the squared difference in microsatellite allele sizes within an individual (mean d 2). However, the strongest effect on survival was not associated with multilocus microsatellite diversity (which would indicate a genome-wide inbreeding effect), but a subset of two loci. This included a major histocompatibility complex (MHC)-linked marker and a putatively neutral microsatellite locus. For both loci, diversity measures incorporating allele size information had stronger associations with survival than measures based on heterozygosity, whether or not allele frequency information was included (such as IR). Increased survival was apparent among heterozygotes at the MHC-linked locus, but the benefits of heterozygosity to survival were reduced in heterozygotes with larger differences in allele size. The effect of heterozygosity on fitness-related traits was supported by data on endoparasites in a subset of the individuals studied in this population. There was no apparent density dependence in survival, nor an effect of sex, age or immigrant status. Our findings suggest that in the apparent absence of inbreeding, variation at specific loci can generate strong associations between fitness and diversity at linked markers.  相似文献   

10.
Egg production and individual genetic diversity in lesser kestrels   总被引:3,自引:2,他引:1  
Fecundity is an important component of individual fitness and has major consequences on population dynamics. Despite this, the influence of individual genetic variability on egg production traits is poorly known. Here, we use two microsatellite-based measures, homozygosity by loci and internal relatedness, to analyse the influence of female genotypic variation at 11 highly variable microsatellite loci on both clutch size and egg volume in a wild population of lesser kestrels (Falco naumanni). Genetic diversity was associated with clutch size, with more heterozygous females laying larger clutches, and this effect was statistically independent of other nongenetic variables such as female age and laying date, which were also associated with fecundity in this species. However, egg volume was not affected by female heterozygosity, confirming previous studies from pedigree-based breeding experiments which suggest that this trait is scarcely subjected to inbreeding depression. Finally, we explored whether the association between heterozygosity and clutch size was due to a genome-wide effect (general effect) or to single locus heterozygosity (local effect). Two loci showed a stronger influence but the correlation was not fully explained by these two loci alone, suggesting that a main general effect underlies the association observed. Overall, our results underscore the importance of individual genetic variation for egg production in wild bird populations, a fact that could have important implications for conservation research and provides insights into the study of clutch size evolution and genetic variability maintenance in natural populations.  相似文献   

11.
Heterozygosity-fitness correlations (HFCs) are frequently used to examine the relationship between genetic diversity and fitness. Most studies have reported positive HFCs, although there is a strong bias towards investigating HFCs in genetically impoverished populations. We investigated HFCs in a large genetically diverse breeding population of Kentish plovers Charadrius alexandrinus in southern Turkey. This small shorebird exhibits highly variable mating and care systems, and it is becoming an ecological model species to understand breeding system evolution. Using 11 conserved and six anonymous microsatellite markers, we tested whether and how heterozygosity was associated with chick survival, tarsus and body mass growth controlling for nongenetic effects (chick sex, hatching date, length of biparental care and site quality) that influence survival and growth. There was no genome-wide effect of heterozygosity on fitness, and we did not find any significant effects of heterozygosity on growth rates. However, two of the 11 conserved markers displayed an association with offspring survival: one marker showed a positive HFC, whereas the other marker showed a negative HFC. Heterozygosity at three further conserved loci showed significant interaction with nongenetic variables. In contrast, heterozygosity based on anonymous microsatellite loci was not associated with fitness or growth. Markers that were correlated with chick survival were not more likely to be located in exons or introns than other markers that lacked this association.  相似文献   

12.
Relationships of genetic diversity at microsatellite loci and quantitative traits were examined in hatchery-produced populations of Japanese flounder using a relatively straightforward experiment. Five hatchery populations produced by wild-caught and domesticated broodstocks were used to examine the effects of different levels (one to three generations) of domestication on the genetic characteristics of hatchery populations. Allelic richness at seven microsatellite loci in all hatchery populations was lower than that in a wild population. Genetic variation measured by allelic richness and heterozygosity tended to decrease with an increase in generations of domestication. In addition, the degree of genetic differentiation from a wild population increased with an increase in generations of domestication. Significant differences in three morphometric traits (dorsal and anal fin ray counts and vertebral counts) and three physiological traits (high temperature, salinity and formalin tolerance) were observed among the hatchery populations. The degree of phenotypic difference among populations was larger in morphometric traits than in physiological traits. The divergence pattern of some quantitative traits was similar to that observed at microsatellite loci, suggesting that domestication causes the decrease of genetic variation and the increase of genetic differentiation for some quantitative traits concomitantly with those for microsatellite loci. Significant positive correlation was observed between F ST and the degree of phenotypic difference in the three morphometric traits and formalin tolerance, indicating that genetic variation at microsatellite loci predicts the degree of phenotypic divergence in some quantitative traits.  相似文献   

13.
Numerous studies have reported correlations between the heterozygosity of genetic markers and fitness. These heterozygosity–fitness correlations (HFCs) play a central role in evolutionary and conservation biology, yet their mechanistic basis remains open to debate. For example, fitness associations have been widely reported at both neutral and functional loci, yet few studies have directly compared the two, making it difficult to gauge the relative contributions of genome‐wide inbreeding and specific functional genes to fitness. Here, we compared the effects of neutral and immune gene heterozygosity on death from bacterial infection in Antarctic fur seal (Arctocephalus gazella) pups. We specifically developed a panel of 13 microsatellites from expressed immune genes and genotyped these together with 48 neutral loci in 234 individuals, comprising 39 pups that were classified at necropsy as having most likely died of bacterial infection together with a five times larger matched sample of healthy surviving pups. Identity disequilibrium quantified from the neutral markers was positive and significant, indicative of variance in inbreeding within the study population. However, multilocus heterozygosity did not differ significantly between healthy and infected pups at either class of marker, and little evidence was found for fitness associations at individual loci. These results support a previous study of Antarctic fur seals that found no effects of heterozygosity at nine neutral microsatellites on neonatal survival and thereby help to refine our understanding of how HFCs vary across the life cycle. Given that nonsignificant HFCs are underreported in the literature, we also hope that our study will contribute toward a more balanced understanding of the wider importance of this phenomenon.  相似文献   

14.
Heterozygosity-fitness correlations (HFCs) at noncoding genetic markers are commonly assumed to reflect fitness effects of heterozygosity at genomewide distributed genes in partially inbred populations. However, in populations with much linkage disequilibrium (LD), HFCs may arise also as a consequence of selection on fitness loci in the local chromosomal vicinity of the markers. Recent data suggest that relatively high levels of LD may prevail in many ecological situations. Consequently, LD may be an important factor, together with partial inbreeding, in causing HFCs in natural populations. In the present study, we evaluate whether LD can generate HFCs in a small and newly founded population of great reed warblers (Acrocephalus arundinaceus). For this purpose dyads of full siblings of which only one individual survived to adult age (i.e., returned to breed at the study area) were scored at 19 microsatellite loci, and at a gene region of hypothesized importance for survival, the major histocompatibility complex (MHC). By examining siblings, we controlled for variation in the inbreeding coefficient and thus excluded genome-wide fitness effects in our analyses. We found that recruited individuals had significantly higher multilocus heterozygosity (MLH), and mean d2 (a microsatellite-specific variable), than their nonrecruited siblings. There was a tendency for the survivors to have a more diverse MHC than the nonsurvivors. Single-locus analyses showed that the strength of the genotype-survival association was especially pronounced at four microsatellite loci. By using genotype data from the entire breeding population, we detected significant LD between five of 162 pairs of microsatellite loci after accounting for multiple tests. Our present finding of a significant within-family multilocus heterozygosity-survival association in a nonequilibrium population supports the view that LD generates HFCs in natural populations.  相似文献   

15.
Recent studies of non-social animals have shown that sexually selected traits signal at least one measure of genetic quality: heterozygosity. To determine whether similar cues reveal group quality in more complex social systems, we examined the relationship between territory size, song structure and heterozygosity in the subdesert mesite (Monias benschi), a group-living bird endemic to Madagascar. Using nine polymorphic microsatellite loci, we found that heterozygosity predicted both the size of territories and the structure of songs used to defend them: more heterozygous groups had larger territories, and more heterozygous males used longer, lower-pitched trills in their songs. Heterozygosity was linked to territory size and song structure in males, but not in females, implying that these traits are sexually selected by female choice and/or male-male competition. To our knowledge, this study provides the first direct evidence in any animal that territory size is related to genetic diversity. We also found a positive association between seasonal reproductive success and heterozygosity, suggesting that this heritable characteristic is a reliable indicator of group quality and fitness. Given that heterozygosity predicts song structure in males, and can therefore be determined by listening to acoustic cues, we identify a mechanism by which social animals may assess rival groups, prospective partners and group mates, information of potential importance in guiding decisions related to conflict, breeding and dispersal.  相似文献   

16.
Positive correlations between individual genetic heterozygosity and fitness-related traits (HFCs) have been observed in organisms as diverse as plants, marine bivalves, fish or mammals. HFCs are not universal and the strength and stability of HFCs seem to be variable across species, populations and ages. We analysed the relationship between individual genetic variability and two different estimators of fitness in natural samples of European eel, growth rate (using back-calculated length-at-age 1, 2 and 3) and parasite infestation by the swimbladder nematode Anguillicola crassus . Despite using a large data set of 22 expressed sequence tags-derived microsatellite loci and a large sample size of 346 individuals, no heterozygote advantage was observed in terms of growth rate or parasite load. The lack of association was evidenced by (i) nonsignificant global HFCs, (ii) a Multivariate General Linear Model showing no effect of heterozygosity on fitness components, (iii) single-locus analysis showing a lower number of significant tests than the expected false discovery rate, (iv) sign tests showing only a significant departure from expectations at one component, and, (v) a random distribution of significant single-locus HFCs that was not consistent across fitness components or sampling sites. This contrasts with the positive association observed in farmed eels in a previous study using allozymes, which can be explained by the nature of the markers used, with the allozyme study including many loci involved in metabolic energy pathways, while the expressed sequence tags-linked microsatellites might be located in genes or in the proximity of genes uncoupled with metabolism/growth.  相似文献   

17.
Life-history theory is based on the assumption that evolution is constrained by trade-offs among different traits that contribute to fitness. Such trade-offs should be evident from negative genetic correlations among major life-history traits. However, this expectation is not always met. Here I report the results of a life-table experiment designed to measure the broad-sense heritabilities of life-history traits and their genetic correlations in 19 different clones of the aphid Myzus persicae from Victoria, Australia. Most individual traits, as well as fitness calculated as the finite rate of increase from the life table, exhibited highly significant heritabilities. The pattern of genetic correlations revealed absolutely no evidence for life-history trade-offs. Rather, life histories were arranged along an axis from better to worse. Clones with shorter development times tended to have larger body sizes, higher fecundities, and larger offspring. The fitness of clones estimated from the life table in the laboratory tended to be positively associated with their abundance in the field. Fitness also increased significantly with heterozygosity at the seven microsatellite loci that were used to distinguish clones and estimate their frequencies in the field. I discuss these findings in light of a recent proposition that positive genetic correlations among life-history traits for which trade-offs are expected can be explained by genetic variation for resource acquisition ability that is maintained in populations by a cost of acquisition, and I propose ways to test for such a cost in M. persicae.  相似文献   

18.
Microsatellite diversity predicts recruitment of sibling great reed warblers.   总被引:15,自引:0,他引:15  
Inbreeding increases the level of homozygosity, which in turn might depress fitness. In addition, individuals having the same inbreeding coefficient (e.g. siblings) vary in homozygosity. The potential fitness effects of variation in homozygosity that is unrelated to the inbreeding coefficient have seldom been examined. Here, we present evidence from wild birds that genetic variation at five microsatellite loci predicts the recruitment success of siblings. Dyads of full-sibling great reed warblers (Acrocephalus arundinaceus), one individual of which became a recruit to the natal population while the other did not return, were selected for the analysis. Each dyad was matched for sex and size. Local recruitment is strongly tied to fitness in great reed warblers as the majority of offspring die before adulthood, philopatry predominates among surviving individuals and emigrants have lower lifetime fitness. Paired tests showed that recruited individuals had higher individual heterozygosity and higher genetic diversity, which was measured as the mean squared distance between microsatellite alleles (mean d(2)), than their non-recruited siblings. These relationships suggest that the microsatellite markers, which are generally assumed to be neutral, cosegregated with genes exhibiting genetic variation for fitness.  相似文献   

19.
We investigated associations between genetic variability and two fitness-related traits--size and age at metamorphosis--in two subartic populations of the common frog, Rana temporaria. We found that metamorphic size was positively correlated with individual heterozygosity (as estimated using eight microsatellite loci) and that maternal heterozygosity also explained a significant amount of variation in this trait. In contrast, age at metamorphosis was only explained by environmental factors. Since size at metamorphosis is positively correlated with fitness in amphibians, these results suggest that genetic variability may be an important component of individual fitness in common frogs. The environmental variation underlying timing of metamorphosis may indicate that strong selection pressure on this trait in the Nordic environment is likely to override genetic effects.  相似文献   

20.
Understanding genetic variation responsible for phenotypic differences in natural populations is significantly hampered by a lack of genomic data for many species. Levels of variation can, however, be estimated using microsatellite markers, which may be useful for relating individual fitness to genetic diversity. Prior studies have demonstrated correlations between heterozygosity and individual fitness in some species. These correlations are sometimes driven by a subset of markers, and it is unclear whether this is because those markers best reflect genome-wide heterozygosity, or whether they are linked to fitness-related genes. Differentiating between these scenarios is hindered when the genomic location of markers is unknown. Here, we develop a predicted genomic map of pinniped microsatellite loci based on conservation of primary sequence and genomic location between dog, cat and giant panda. We mapped 210 of 260 (81%) microsatellites from pinnipeds to locations in dog, cat and giant panda genomes. Based on the demonstrable synteny between the genomes of closely related taxa within the Carnivora, we use these data to identify those microsatellites with the greatest chance of cross-species amplification success and demonstrate successful amplification of 21 of 26 loci for cat, dog and two seal species. We also demonstrate the potential to identify candidate genes that may underpin the functional relationship with individual fitness. Overall, we show that this approach provides a rapid and robust method to elucidate genome organisation for nonmodel organisms and have established a resource that facilitates further genetic research on pinnipeds that also has wider applicability to other carnivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号