首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim was to study whether different strains of Coxsackievirus B4 (CBV-4) are able to infect human pancreatic islet cells in vitro and cause morphological and functional damages. Isolated islets maintained in tissue culture were infected with five well- characterised strains of CBV-4. Aliquots of the culture medium were analysed with regard to virus replication and insulin content. Infected and uninfected islets were examined by light microscopy to determine the degree of virus-induced cytopathic effect (CPE). The results showed that the islet cells were susceptible to infection by all the strains of CBV-4 although the outcome of the infection differed. The virus titres obtained at 48 and 72 hours post infection differed significantly between all the CBV-4 strains (p < 0.001), indicating different ability to replicate in islet cells. Pronounced to weak CPE, which was partly due to the origin (donor) of the islets, was induced by four of the five CBV-4 strains. One strain (VD2921) replicated without causing CPE despite high virus titres. One (V89-4557) of the CBV-4 strains always revealed pronounced CPE. Infection by this strain also caused functional impairment that significantly affected insulin response to high glucose at 48 hours post infection (p < 0.001). Replication of another CBV-4 strain (JVB) in the islet cells significantly increased the release of insulin compared to non-infected control cells (p < 0.001) indicating damage of the β-cells leading to leakage of insulin.  相似文献   

2.
3.
Cytokines and chemokines play an important role in the first line of defence against viral infections. Moreover, these groups of proteins also contribute significantly to regulation of the acquired immune response. Therefore, knowledge of the expression of cytokines, chemokines and factors involved in their action may provide information about the immune reaction responsible for elimination of viral infections and for immune-mediated pathology. Using cDNA arrays, we have evaluated the expression of cytokines and genes related to cytokine function in resting murine peritoneal cells and in inflammatory macrophages infected with Herpes simplex virus (HSV)-1 and -2. To allow comparison, the experiments were performed using both the resistant mouse strain C57BL/6 and the susceptible strain BALB/c. The work identified a group of genes that is differentially expressed during HSV infection of cells from the two strains. Another group of genes was affected by HSV-1 but not HSV-2 infection and vice versa. Further analysis of these genes may provide new information about host defense against viral infections and could also lead to identification of the molecular basis for the pathological differences between infections with HSV-1 and -2.  相似文献   

4.
It is widely believed that the cytokines tumor necrosis factor (TNF)-alpha, interleukin (IL)-1, and IL-6 are the main proinflammatory mediators induced in the host by bacteria and their cell wall components. To test this hypothesis, we compared the level of expression of 600 genes activated in human monocytes by Staphylococcus aureus, peptidoglycan, endotoxin, and interferon-gamma. These stimulants induced expression of over 120 genes, as identified by cDNA arrays. The highest activated genes for proinflammatory mediators induced by all three bacterial stimulants were chemokine genes (IL-8 and macrophage inflammatory protein (MIP)-1alpha), whereas cytokine genes (TNF-alpha, IL-1, and IL-6) were induced to a lower extent. Genes for other chemokines (MIP-2alpha, MIP-1beta, and monocyte chemoattractant protein-1) were also induced higher than the cytokine genes by peptidoglycan, and as high or higher than the cytokine genes by S. aureus and endotoxin. This high induction of chemokine genes was confirmed by quantitative RNase protection assay, and high secretion of chemokines was confirmed by enzyme-linked immunosorbent assays. Although genes for chemokines were the highest and genes for cytokines were the second highest induced genes by all three bacterial stimulants, each stimulus induced a unique pattern of gene expression. By contrast, expression of a completely different gene pattern was induced by a nonbacterial stimulus, interferon-gamma. These results establish chemokines as the main mediators induced by both Gram-positive and Gram-negative bacteria and are consistent with the highly inflammatory nature of bacterial infections.  相似文献   

5.
Diastolic dysfunction suggestive of diabetic cardiomyopathy is established in children with T1DM, but its pathogenesis is not well understood. We studied the relationships of systemic inflammatory cytokines/chemokines and cardiac function in 17 children with T1DM during and after correction of diabetic ketoacidosis (DKA). Twenty seven of the 39 measured cytokines/chemokines were elevated at 6–12 hours into treatment of DKA compared to values after DKA resolution. Eight patients displayed at least one parameter of diastolic abnormality (DA) during acute DKA. Significant associations were present between nine of the cytokine/chemokine levels and the DA over time. Interestingly, four of these nine interactive cytokines (GM-CSF, G-CSF, IL-12p40, IL-17) are associated with a Th17 mediated cell response. Both the DA and CCL7 and IL-12p40, had independent associations with African American patients. Thus, we report occurrence of a systemic inflammatory response and the presence of cardiac diastolic dysfunction in a subset of young T1DM patients during acute DKA.  相似文献   

6.
Dungan LS  Mills KH 《Cytokine》2011,56(1):126-132
The interleukin (IL)-1 cyokine family plays a vital role in inflammatory responses during infection and in autoimmune diseases. The pro-inflammatory cytokines, IL-1β and IL-18 are members of the IL-1 family that require cleavage by caspase-1 in the inflammasome to generate the mature active cytokines. Cells of the innate immune system, including γδ T cells and invariant natural killer T (iNKT) cells respond rapidly to invading pathogens by producing inflammatory cytokines, such as IFN-γ and IL-17. IL-1β or IL-18 in combination with IL-23 can induce IL-17 production by γδ T cells without T cell receptor (TCR) engagement. IL-1β and IL-23 can also synergize to induce IL-17 production by iNKT cells. Furthermore, CD4+ αβ effector memory T cells secrete IL-17 in response to IL-23 in combination with either IL-1β or IL-18, in the absence of any TCR stimulation. The early IL-17 produced by innate cells induces recruitment of neutrophils to the site of infection, stimulates local epithelial cells to secrete anti-microbial proteins, such as lipocalins and calgranulins, induces production of structural proteins important in tight junction stability, and promotes production of matrix metalloproteinases. Caspase-1 processed IL-1 family cytokines therefore play a vital role in the innate immune response and induction of IL-17 from innate immune cells which functions to fight infections and promote autoimmunity.  相似文献   

7.
目的探讨白念珠菌ALS3、SSA1基因缺失对阴道上皮细胞激发免疫反应的作用。方法培养白念珠菌野生株及ALS3、SSA1基因敲除株(SC5314、Δals3、Δssa1),对其进行形态测定。按不同MOI感染人阴道上皮细胞系VK2/E6E7细胞,通过台盼蓝染色观察和乳酸脱氢酶(LDH)活性检测,评价不同MOI白念珠菌对上皮细胞的损伤作用;使用酶联免疫吸附试验(ELISA)评估感染过程中炎性细胞因子及趋化因子在共培养上清中的差异。结果 ALS3基因的缺失对白念珠菌芽管长度影响差异无统计学意义,而SSA1基因的缺失与其他两个菌株相比芽管长度减少约30%~40%(P<0.001)。台盼蓝染色观察及LDH测定发现,3株菌在感染上皮细胞时,其细胞损伤能力均与菌载量成正比;与野生型相比,Δssa1突变体在相同比率感染上皮细胞时,细胞损伤能力明显降低,且差异有统计学意义(P<0.05),Δals3突变株影响较小,甚至略微升高。检测炎性细胞因子及趋化因子发现,突变株在诱导上皮细胞产生促炎因子及趋化因子(GM-CSF、G-CSF、IL-1α、IL-8)的能力上明显减弱,差异均有统计学意义(P<0.05)。结论 ALS3和SSA1基因表达在阴道上皮细胞抗白念珠菌感染的局部免疫应答过程中可能起到重要作用,且SSA1基因表达意义更大。  相似文献   

8.
Herpesvirus infections can frequently lead to acute inflammation, yet the mechanisms regulating this event remain poorly understood. In order to determine some of the immunological mechanisms regulated by human herpesvirus infections, we studied the gene expression profile of lymphocytes infected with human herpesvirus 6 (HHV-6) by using a novel immunomicroarray. Our nylon-based immunomicroarray contained more than 1,150 immune response-related genes and was highly consistent between experiments. Experimentally, we found that independently of the HHV-6 strain used to infect T cells, multiple proinflammatory genes were increased and anti-inflammatory genes were decreased at the mRNA and protein levels. HHV-6 strains A and B increased expression of the genes for interleukin-18 (IL-18), the IL-2 receptor, members of the tumor necrosis factor alpha superfamily receptors, mitogen-activated protein kinase, and Janus kinase signaling proteins. As reported previously, CD4 protein levels were also increased significantly. Specific type 2 cytokines, including IL-10, its receptor, and IL-14, were downregulated by HHV-6 infection and, interestingly, amyloid precursor proteins and type 1 and 2 presenilins. Thus, T cells respond to HHV-6 infection by inducing a type 1 immune response that may play a significant role in the development and progression of diseases associated with HHV-6, including pediatric, hematologic, transplant, and neurologic disorders.  相似文献   

9.
The outcome of malaria infection is determined, in part, by the balance of pro-inflammatory and regulatory immune responses. Failure to develop an effective pro-inflammatory response can lead to unrestricted parasite replication, whilst failure to regulate this response leads to the development of severe immunopathology. IL-10 and TGF-beta are known to be important components of the regulatory response, but the cellular source of these cytokines is still unknown. Here we have examined the role of natural and adaptive regulatory T cells in the control of malaria infection and find that classical CD4+CD25(hi) (and Foxp3+) regulatory T cells do not significantly influence the outcome of infections with the lethal (17XL) strain of Plasmodium yoelii (PyL). In contrast, we find that adaptive IL-10-producing, CD4+ T cells (which are CD25-, Foxp3-, and CD127- and do not produce Th1, Th2, or Th17 associated cytokines) that are generated during both PyL and non-lethal P. yoelii 17X (PyNL) infections are able to down-regulate pro-inflammatory responses and impede parasite clearance. In summary, we have identified a population of induced Foxp3- regulatory (Tr1) T cells, characterised by production of IL-10 and down regulation of IL-7Ralpha, that modulates the inflammatory response to malaria.  相似文献   

10.
Acute toxoplasmosis leads to lethal overproduction of Th1 cytokines   总被引:29,自引:0,他引:29  
Virulence in Toxoplasma gondii is strongly influenced by the genotype of the parasite. Type I strains uniformly cause rapid death in mice regardless of the host genotype or the challenge dose. In contrast, the outcome of infections with type II strains is highly dependent on the challenge dose and the genotype of the host. To understand the basis of acute virulence in toxoplasmosis, we compared low and high doses of the RH strain (type I) and the ME49/PTG strain (type II) of T. gondii in outbred mice. Differences in virulence were reflected in only modestly different growth rates in vivo, and both strains disseminated widely to different tissues. The key difference in the virulent RH strain was the ability to reach high tissue burdens rapidly following a low dose challenge. Lethal infections caused by type I (RH) or type II (PTG) strain infections were accompanied by extremely elevated levels of Th1 cytokines in the serum, including IFN-gamma, TNF-alpha, IL-12, and IL-18. Extensive liver damage and lymphoid degeneration accompanied the elevated levels of cytokines produced during lethal infection. Increased time of survival following lethal infection with the RH strain was provided by neutralization of IL-18, but not TNF-alpha or IFN-gamma. Nonlethal infections with a low dose of type II PTG strain parasites were characterized by a modest induction of Th1 cytokines that led to control of infection and minimal damage to host tissues. Our findings establish that overstimulation of immune responses that are normally necessary for protection is an important feature of acute toxoplasmosis.  相似文献   

11.
Active suppression of inflammation is a strategy used by many viral and bacterial pathogens, including virulent strains of the bacterium Francisella tularensis, to enable colonization and infection in susceptible hosts. In this study, we demonstrated that virulent F. tularensis strain SchuS4 selectively inhibits production of IL-12p40 in primary human cells via induction of IFN-β. In contrast to the attenuated live vaccine strain, infection of human dendritic cells with virulent SchuS4 failed to induce production of many cytokines associated with inflammation (e.g., TNF-α and IL-12p40). Furthermore, SchuS4 actively suppressed secretion of these cytokines. Assessment of changes in the expression of host genes associated with suppression of inflammatory responses revealed that SchuS4, but not live vaccine strain, induced IFN-β following infection of human dendritic cells. Phagocytosis of SchuS4 and endosomal acidification were required for induction of IFN-β. Further, using a defined mutant of SchuS4, we demonstrated that the presence of bacteria in the cytosol was required, but not sufficient, for induction of IFN-β. Surprisingly, unlike previous reports, induction of IFN-β by F. tularensis was not required for activation of the inflammasome, was not associated with exacerbation of inflammatory responses, and did not control SchuS4 replication when added exogenously. Rather, IFN-β selectively suppressed the ability of SchuS4-infected dendritic cells to produce IL-12p40. Together, these data demonstrated a novel mechanism by which virulent bacteria, in contrast to attenuated strains, modulate human cells to cause disease.  相似文献   

12.
13.
Th17细胞在肺部感染免疫中的作用   总被引:3,自引:0,他引:3  
Th17细胞是近年来发现的一种新的效应T细胞亚群,在自身免疫性疾病和感染中发挥重要的作用,其分泌产生几种致炎细胞因子,包括新发现的细胞因子白细胞介素17。Th17产生的细胞因子与Th1、Th2不同并且与其相互对抗。Th17细胞很可能对防御胞外病原菌的感染及自身免疫性疾病产生影响。综述了Th17细胞产生的细胞因子及其在肺部感染免疫中的作用相关方面的进展。  相似文献   

14.
The Biobreeding Worcester rat provides one of the best models of autoimmune diabetes. Immunopathologic studies of acute diabetes show that the islets are infiltrated by T cells and macrophages. It has been hypothesized that the islets are damaged by the secretion of cytokines such as IL-1 and TNF-alpha and that their function may be altered by IL-6. In this study, we utilized in situ hybridization to determine the expression of the IL-1, TNF, and IL-6 genes within the pancreas of the acute diabetic Biobreeding Worcester rat. These studies showed that cells expressing IL-1, TNF, and IL-6 were present within the islets and in the exocrine pancreas surrounding islets, ducts, and vessels and in an interstitial location. Cells expressing TNF and IL-1 mRNA were present in about 20% of the islets, whereas cells expressing IL-6 were present in about 4% of the islets. Islets containing TNF- or IL-1-positive cells contained about three positive cells per islet whereas only about one IL-6-positive cell was present per islet. In 26% of the islets peri-insular TNF-positive cells were found. Peri-insular IL-1 positive cells were seen in 14% of the islets and 8% showed peri-insular IL-6 positive cells. In nondiabetic 30-day old DP or 90-day-old DR rats intra-islet cytokine gene expression was not seen. Our studies support the view that cytokines are important in beta cell destruction.  相似文献   

15.
Mexican Ninoa and Queretaro (Qro) TcI strains of Trypanosoma cruzi have shown different degrees of virulence, and the two strains produce heterogeneous immune responses in the hearts of infected mice. This work shows that the same strains can invade the intestine by an intraperitoneal route and establish an infection, mainly in the colon. The three segments of the small intestine (duodenum, jejunum and ileum) were infected to a lesser degree than the colon. Despite the fact that parasites were predominantly found in the colon, an obvious inflammatory reaction was observed in the submucosal layer along the entire intestinal tract, with the virulent Qro strain causing significantly more areas of higher immune infiltration. A clear recruitment of CD4+ and CD8+ T lymphocytes to the mesenteric ganglia was observed during infection with the virulent strain. Macrophages were also differentially distributed in the gastrointestinal tract. These later cells infiltrated fewer amastigote nests in the mice infected with the Qro strain than in the mice infected with the Ninoa strain. When IFN-γ, TNF-α, and IL-4 levels were measured, an increase in these cytokines was observed compared with the uninfected mice. The role of these inflammatory reactions in the pathogenesis of Chagas enteropathy is also discussed in this paper.  相似文献   

16.
Type 1 diabetes mellitus (T1DM) is a widespread severe disease that results from autoimmune destruction of β cells in Langerhans islets of the pancreas. To date, several loci involved in T1DM have been reliably identified using various approaches: the MHC locus, VNTR within the 5′-nontranscibed region of the insulin gene (INS), CTLA4 (T-cell surface receptor), PTPN22, PTPN2 (T-cell tyrosine phosphatases), IL2 (interleukin 2, IL-2), IL2RA (IL-2 receptor α chain), KIAA0350 (unknown function), and IFIH1 (receptor for double-stranded DNA generated in virus infections). Functional analysis of their protein products confirmed the hypothesis that T1DM is underlain by deregulation of the mechanisms of immune tolerance and, on the other hand, a destructive immune response against the body’s own proteins after virus infection or some other immune stress. Thus the protein products of MHC, INS, PTPN22, and PTPN2 are involved in the intrathymic formation of the T-cell repertoire, responsible for immune defense of the body. On the other hand, nonspecific activation of T cells, which starts autoimmune destruction of pancreatic β cells, is most likely associated with the protein products of CTLA4, IL2, IL2RA, and, possibly, PTPN22 and PTPN2. Apart from the genes with unknown functions, the only exception is IFIH1, but its association with T1DM confirms that certain virus infections can activate autoreactive T cells and lead to T1DM.  相似文献   

17.
The objective of this study was to examine the expression of TLR by human primary uterine epithelial cells (UEC) and to determine whether exposure to the TLR agonist poly(I:C) would induce an antiviral response. The secretion of several cytokines and chemokines was examined as well as the mRNA expression of human beta-defensin-1 and -2 (HBD1 and HBD2), IFN-beta, and the IFN-beta-stimulated genes myxovirus resistance gene 1 and 2',5' oligoadenylate synthetase. The expression of TLR1-9 by UEC was demonstrated by RT-PCR, with only TLR10 not expressed. Stimulation of UEC with the TLR3 agonist poly(I:C) induced the expression of the proinflammatory cytokines TNF-alpha, IL-6, GM-CSF, and G-CSF, as well as the chemokines CXCL8/IL-8, CCL2/MCP-1, and CCL4/MIP-1beta. In addition, poly(I:C) exposure induced the mRNA expression of HBD1 and HBD2 by 6- and 4-fold, respectively. Furthermore, upon exposure to poly(I:C) UEC initiated a potent antiviral response resulting in the induction of IFN-beta mRNA expression 70-fold and myxovirus resistance gene 1 and 2',5' oligoadenylate synthetase mRNA expression (107- and 96-fold), respectively. These results suggest that epithelial cells that line the uterine cavity are sensitive to viral infection and/or exposure to viral dsRNA released from killed epithelial cells. Not only do UEC release proinflammatory cytokines and chemokines that mediate the initiation of an inflammatory response and recruitment of immune cells to the site of infection, but they also express beta-defensins, IFN-beta, and IFN-beta-stimulated genes that can have a direct inhibiting effect on viral replication.  相似文献   

18.
We examined the mechanisms involved in the development of lung lesions after infection with Cryptococcus neoformans by comparing the histopathological findings and chemokine responses in the lungs of mice infected with C. neoformans and assessed the effect of interleukin (IL) 12 which protects mice from lethal infection. In mice infected intratracheally with a highly virulent strain of C. neoformans, the yeast cells multiplied quickly in the alveolar spaces but only a poor cellular inflammatory response was observed throughout the course of infection. Very little or no production of chemokines, including MCP-1, RANTES, MIP-1alpha, MIP-1beta and IP-10, was detected at the mRNA level using RT-PCR as well as at a protein level in MCP-1, RANTES and MIP-1alpha. In contrast, intraperitoneal administration of IL-12 induced the synthesis of these chemokines and a marked cellular inflammatory response involving histiocytes and lymphocytes in infected mice. Our findings were confirmed by flow cytometry of intraparenchymal leukocytes obtained from lung homogenates which showed IL-12-induced accumulation of inflammatory cells consisting mostly of macrophages and CD4+ alphabeta T cells. On the other hand, C-X-C chemokines including MIP-2 and KC, which attract neutrophils, were produced in infected and PBS-treated mice but treatment with IL-12 showed a marginal effect on their level, and neutrophil accumulation was similar in PBS- and IL-12-treated mice infected with C. neoforman. Our results demonstrate a close correlation between chemokine levels and development of lung lesions, and suggest that the induction of chemokine synthesis may be one of the mechanisms of IL-12-induced protection against cryptococcal infection.  相似文献   

19.
20.
Type I inflammatory cytokines are essential for immunity to many microbial pathogens, including Toxoplasma gondii. Dendritic cells (DC) are key to initiating type 1 immunity, but neutrophils are also a source of chemokines and cytokines involved in Th1 response ignition. We found that T. gondii triggered neutrophil synthesis of CC chemokine ligand (CCL)3, CCL4, CCL5, and CCL20, chemokines that were strongly chemotactic for immature DC. Moreover, supernatants obtained from parasite-stimulated polymorphonuclear leukocytes induced DC IL-12(p40) and TNF-alpha production. Parasite-triggered neutrophils also released factors that induced DC CD40 and CD86 up-regulation, and this response was dependent upon parasite-triggered neutrophil TNF-alpha production. In vivo evidence that polymorphonuclear leukocytes exert an important influence on DC activation was obtained by examining splenic DC cytokine production following infection of neutrophil-depleted mice. These animals displayed severely curtailed splenic DC IL-12 and TNF-alpha production, as revealed by ex vivo flow cytometric analysis and in vitro culture assay. Our results reveal a previously unrecognized regulatory role for neutrophils in DC function during microbial infection, and suggest that cross-talk between these cell populations is an important component of the innate immune response to infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号