首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stomach contents and stable isotope analyses were used to determine if secondary planktonic dispersal of King George whiting Sillaginodes punctata post‐larvae from shallow inshore habitats in a large embayment in south‐eastern Australia was initiated by wave disturbance. Benthic harpacticoid copepods, which live in and amongst seagrass shoots, were found in the stomachs of S. punctata caught offshore in the plankton only during rough weather. Stable isotope analyses showed that the base of nutritional support, estimated from values of δ13C, of S. punctata collected in the plankton changed significantly during rough (waves > 0·25 m) compared to calm (waves < 0·25 m) weather conditions. Values of δ13C collected from S. punctata in the plankton during rough weather were more consistent with S. punctata values found in the seagrass. Sillaginodes punctata collected in the plankton and seagrass during rough and calm weather failed to show differences in δ15N values. Dietary and isotope analyses support a model whereby newly arrived S. punctata larvae can be resuspended from seagrass beds and dispersed offshore by wave action during onshore winds. Secondary planktonic dispersal in S. punctata would provide a mechanism by which seagrass beds further inside Port Phillip Bay are colonized.  相似文献   

2.
Directed motion of marine organisms is examined with a focus on efficient behaviour, where efficient swimming minimizes either energetic expenditure or transit time. The swimming behaviour of late pelagic stage reef fish larvae is modelled to illustrate relevant concepts. To swim efficiently in the sea, an organism should exploit current-driven movements of the medium. Favourable currents should be ridden and unfavourable currents avoided. Relatively short movements to control advection can have a greater effect than longer swimming bouts used for independent horizontal locomotion. If larvae exploit the vertical structure of the water column, then the extent to which they can influence their dispersal will be substantially increased.  相似文献   

3.
1. The fish fauna of many shallow Mediterranean Lakes is dominated by small‐bodied exotic omnivores, with potential implications for fish–zooplankton interactions still largely unknown. Here we studied diel variation in the vertical and horizontal distribution of the crustacean plankton in Lake Vela, a shallow polymictic and eutrophic lake. Diel sampling was carried out on three consecutive days along a horizontal transect, including an open‐water station and a macrophyte (Nymphaea alba) bed. Since transparency is a key determinant of the predation risk posed by fish, the zooplankton sampling campaigns were conducted in both the turbid (autumn) and clear water (spring) phases. 2. In the turbid phase, most taxa were homogeneously distributed along the vertical and horizontal axes in the three consecutive days. The only exception was for copepod nauplii, which showed vertical heterogeneity, possibly as a response to invertebrate predators. 3. In the clear water phase, most zooplankton taxa displayed habitat selection. Vertically, the general response consisted of a daily vertical migration (DVM), despite the limited depth (1.6 m). Horizontally, zooplankters showed an overall preference for the pelagic zone, independent of the time of the day. Such evidence is contrary to the postulated role of macrophytes as an anti‐predator refuge for the zooplankton. 4. These vertical (DVM) and horizontal (macrophyte‐avoidance) patterns were particularly conspicuous for large Daphnia, suggesting that predation risk from size‐selective predators (fish) was the main factor behind the spatial heterogeneity of zooplankton in the spring. Thus, the difference in the zooplankton spatial distribution pattern and habitat selection among seasons (turbid and clear water phases) seems to be mediated the predation risk from fish, which is directly related to water transparency. 5. The zooplankton in Lake Vela have anti‐predator behaviour that minimises predation from fish. We hypothesise that, due to the distinct fish community of shallow Mediterranean lakes, aquatic macrophytes may not provide adequate refuge to zooplankters, as seen in northern temperate lakes.  相似文献   

4.
RHEOTROPISM IN FISHES   总被引:6,自引:0,他引:6  
(1) The fluid properties of air and water enable animals to orientate to flow and this behaviour in water is termed rheotaxis. Fish, however, have a wide range of responses to currents, extending beyond simple orientation, and the term rheotropism is therefore used as a ‘portmanteau’ word to describe all such reactions. (2) Fish detect currents directly by flow over the body surface or indirectly by other stimuli. Indirect responses are more common and occur in response to visual, tactile and inertial stimuli resulting from displacement of the fish by the current. Reactions to displacement of visual images are called optomotor reactions. The lateral line is not involved except in the detection of small localized jets of water. It has not been demonstrated that any fish can detect the current by electrical stimuli, although it is theoretically possible for some to do so. (3) In the basic form of rhotaxis the fish heads upstream and maintains station by stemming the current. Current detection thresholds fall within the range 0.4 to 10 cm/s for tactile stimuli but may be as low as 0.03 cm/s for visual stimuli. (4) Visual responses have been studied by simulating displacement by the current in optomotor apparatus. Fish respond to a rotating black-and-white-striped background by compensatory movements of the head and eyes - optokinetic nystagmus - or by the optomotor reaction, in which the fish swims with the background. (5) Fish show an orthokinesis in optomotor apparatus, their mean swimming speed increasing with the speed of rotation of the background. The precise form of the relationship varies between species and there is also considerable individual variation in performance. Fish accelerate and decelerate relative to the background, fixating on a particular stripe for short periods. (6) Factors limiting the appearance of the optomotor response are contrast, illuminance, acuity, critical flicker fusion frequency and spectral sensitivity. (7) Fish tolerate retinal image movements equivalent to those received when they are carried forwards by the current but not to those received when they are carried backwards. There are ganglion cells in the optic tectum which are sensitive to the direction of movement of targets across the visual field. In the goldfish there are significantly more units sensitive to movements in the temporo-nasal than in the opposite direction. (8) There are close parallels between the behaviour of fish in schools and in an optomotor apparatus. The optomotor response is apparently innate, occurring in newly hatched fry. (9) Physical and chemical factors can modify rheotaxis. Temperature and olfactory stimuli affect both the sign of the taxis and the kinetic component of the behaviour. (10) Thyroid hormones which are involved in the control of migration have been shown to affect the kinetic component of rheotaxis. (11) Fish show a number of hydrodynamic adaptations to life in currents. Morphological modifications are greatest in fish from torrential streams, which show extreme dorsoventral flattening and have specialized adhesive organs. Other fish select areas of low velocity or decrease their buoyancy with increasing current speed. (12) Rheotropic behaviour plays an important role in the distribution of fish within stream systems, in the maintenance of territory and station and in feeding behaviour. Territory, station and spawning sites in salmonids are all selected in relation to water velocity. (13) Water currents are thought to provide either a transport system or directional clues for fish on migration. The fish either does not respond to the current and is carried passively downstream, or it makes an orientated movement, swimming up- or downstream. (14) Eggs and larvae are known to drift passively downstream from their spawning grounds and some adult fish may also drift passively. In the sea both adult and juvenile fish use a form of modulated drift associated with vertical migration. Fish move up into midwater either by direct tidal selection or in relation to the diel cycle of illuminance. In fresh water the downstream migrations of salmonid fry, and smolts under some conditions, occur by modulated drift. (15) There is no evidence that fish migrating in the sea orientate to the current, but in fresh water the upstream migrations of diadromous fish are clearly orientated movements. (16) Water velocity is a major factor for salmonids migrating upstream. For fry it limits the occurrence of upstream migrations and for adults it can also prevent upstream movement. But migrations are often initiated by freshets, and changing water velocity is thought to be the most important factor associated with a freshet. (17) Both environmental and genetic factors affect the direction of migration in relation to the current. In some sockeye salmon fry direction is determined by temperature, but in others the overall direction of movement is genetically determined and environmental factors only modify the behaviour. (18) Rheotropic behaviour has a number of important practical applications in the capture of fish and in guiding them past dams and power stations. (19) The optomotor response plays a basic role in the capture of roundfish by trawls under conditions when the fish can see the gear. Many fish are caught because they become fatigued after a prolonged period of swimming at the same speed as the trawl. (20) Most success in guiding fish away from hazardous areas and bypassing them round dams has been achieved with mechanical barriers which depend on rheotropic reactions of the fish. (21) Louvre screens are very successful in deflecting juvenile salmonids migrating downstream past small dams but are impracticable at large dams. Instead, the turbine intakes are commonly sited at a considerable depth and fish are bypassed by mechanical screens either at the surface of the forebay or into the gatewells immediately upstream of the turbine intakes. (22) With upstream migrants the basic problem is to attract fish to the lower end of the fishways. An adequate ‘attraction velocity’ is an important feature of fishways, which must be sited so that the fish avoid the high velocity discharges from spillways and turbines.  相似文献   

5.
The behavior of chum slamon,Oncorhynchus keta, was studied using ultrasonic telemetry in the waters off the Okhotsk coast of Hokkaido from 1979 to 1981. Thirty-six adult fish were outfitted with a 50 KHz ultrasonic transmitter provided with either a depth sensor, depth/illumination sensors, or depth/ temperature sensors. Twenty-one of the experimental fish were used as controls and left intact. Of the remaining fish, six had their sight destroyed, seven had their olfactory nerves severed or their nares filled with wax, one had both senses destroyed, and one had a sham operation, but had only a shallow transverse cut made in the skin over the olfactory nerves. Control fish and the fish with the sham operation initially swam in a horizontal zigzag pattern while fish with an obliterated sense swam in a similar pattern but to a reduced extent. The horizontal and vertical speeds of the intact fish were faster than those of the fish with a destroyed sense. Amplitude of vertical movements of the intact fish stretched from surface to bottom, while fish with destroyed vision tended towards midwater. Fish without an olfactory sense tended to be at the surface or near the bottom. Regular vertical movement would be effective in refreshing olfactory epithelia which might become acclimated when exposed to one odor. The vertical movements can be found in the horizontal zigzag movements in coastal and near shore migrations, as well as in the stream phase of homing. The zigzag movements, both horizontal and vertical, allow the fish to sense the water masses and locate the correct tributary.  相似文献   

6.
Sixty-four post-larvae of the King George whiting Sillaginodes punctata were tested in swimming chambers, against one of five flow-through velocities (2, 4, 6, 8 or 10 cm s −1) for up to a maximum of 120 min. Fish were determined by regression to have an FV50 (50% fatigue velocity) of 6.0 cm s−1. No fish survived the full 120 min at 10 cm s−1. Sixteen individuals were tested in a swimming chamber against a flow-through velocity of 6 cm s −1 and allowed to swim to exhaustion. Fish swam between 25 and 538 min with a peak at c . 6–8 h. Total swimming time was not correlated with standard length of fish although the size range examined was narrow. Relative to recent studies on the swimming abilities of late-stage larvae of reef fishes, this study indicates that post-larval King George whiting are weak swimmers. The weak swimming ability of post-larval King George whiting is consistent with studies showing passive dispersal and recruitment of this species.  相似文献   

7.
The behaviour, distribution and abundance of the Pacific sardine Sardinops sagax , detected by acoustics, was studied in relation to the pelagic environmental conditions of water temperature, fluorescence and dissolved oxygen concentration induced by tidal currents in Bahía Magdalena, México (24°32' N; 112°01' W). Sampling was along an 18 km long transect covering an area inside the bay (mean depth 20 m), the main entrance to the bay (mean depth 35 m), and the continental shelf (mean depth 100 m). The main entrance to the bay was the most dynamic area along the hydrographic transect, where the Pacific sardines tended to aggregate, probably to feed on the phytoplankton accumulated during the receding tide. With the flood tide, a high-speed tidal current is generated, introducing cool water with low oxygen concentrations into the bay. During the ebb tide, a tidal wave is also formed, but the warm and relatively well oxygenated bay water mass is transported towards the open sea. Acoustic records showed that whatever the tidal current direction (inflow or outflow), no fish schools were detected within the area of more intense tidal current speeds (>120 cm s−1). Visual observations of surface Pacific sardine schools during the flood tide indicate that sardines were out of the transducer signal detection range (<10 m depth), suggesting that Pacific sardines undergo vertical migration, probably to avoid the high water current speed with low dissolved oxygen content. This behaviour may have a relevant effect on the overall hydroacoustic estimation of small pelagic fish abundance in shallower pelagic environments such as this subtropical bay.  相似文献   

8.
Displacement of juvenile Atlantic salmon Salmo salar within an artificial stream was either spontaneous (fish left areas of shallow water in response to experimental reduction in water level) or imposed (fish were removed by the experimenter from areas of shallow water and placed at a distance from their home site). Prior to displacement, the fish showed a high degree of site fidelity in terms of preferential use of specific areas within the stream, but the extent to which this persisted once they had left/been removed from their preferred sites was variable. Direction of displacement was not a critical factor, but homing was significantly less likely to occur following spontaneous as opposed to imposed displacement. In the case of imposed displacement, fish that were more strongly site attached prior to displacement were more likely to return to their home site after this manipulation.  相似文献   

9.
The diel variations in feeding behaviour and vertical distribution were determined for ten species of a tropical fish community in a shallow SE Sri Lankan reservoir. The fish community consisted of two introduced exotic tilapias and eight indigenous riverine species including five cyprinids, one clarid, one hemiramphid and one gobid. Multi-mesh gillnets dividing the water column in six depth strata were set with a six-hour interval throughout four 24-hour periods. The study of the diel variation in feeding behaviour was based on analysis of catch data, gut contents and gut fullness per setting time. The diel variation in vertical distribution was determined per species for each of the six depth-strata. Feeding behaviour and vertical distribution differed significantly among species and for most species throughout the 24-hour period. Feeding behaviour and vertical distribution were correlated. The status of whether or not a fish is feeding determines if the trophic and spatial resource dimensions are interrelated. Resource partitioning along the spatial dimension may reduce exploitative competition at the time of feeding, whereas it may limit interference competition or predation during non-feeding periods. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Summary

Palaemon longirostris and Crangon crangon larval and post-larval stages were collected intensively in two 24-h cycles during neap and spring tidal periods in a fixed station located in the mid-Mira estuary (southwest Portugal). In each case, on the previous day, horizontal distribution of larval stages was studied in a series of 20 stations from the mouth of the estuary to near freshwater. Horizontal distribution of the discrete instars of both species were similar, suggesting larval retention. Results from the 24-h cycles indicate a semilunar cycle of larval release activity, and an initial displacement of the larvae from the parental stock, as newly-hatched larvae concentrate in the surface layer of the water column on post-crepuscular ebbing tides. The sequence of larval stages tends to be progressively more dependent of the bottom layers, and the whole larval and post-larval development is accomplished within the estuarine boundaries. Larval release cycles, coupled with duration of development and progressive change in vertical position, induce mutual exclusion of different aged larvae, which may minimise cannibalistic behaviour and competition between larvae with different capabilities.  相似文献   

11.
Walleye pollock larvae under controlled laboratory conditions were exposed to vertical gradients of sea water flow in low and high light. Whether flow originated from the surface or the bottom, larvae responded by altering depth distribution, showing attraction to low flows, avoidance of higher flows and when flow was above a threshold level, loss of ability to orient, swim and feed. These results demonstrate that walleye pollock have the capability for responding to gradients of flow by adjusting their vertical distribution. Walleye pollock and many other pelagic fish larvae have weak swimming capabilities and are generally unable to directly control horizontal distributions in the sea by swimming in higher flow regimens. However, using vertical migration, larvae may select conditions of flow direction and speed which are favorable for feeding and predator avoidance and which indirectly allow them to control transport, aggregation and dispersion.  相似文献   

12.
Early macrobenthos succession in small, disturbed patches on subtidal soft bottoms is facilitated by the arrival of post-larval colonizers, in particular by active and passive dispersers along the seafloor or through the water column. Using a field experiment at two contrasting sites (protected vs. exposed to wave action), we evaluated the role of (a) active and passive dispersal through the water column and (b) the influence of small-scale spatial variability during succession of subtidal macrobenthic communities in northern Chile. Containers of two sizes (surface area: small—0.12?m2 and large—0.28?m2) at two positions above the natural substratum (height: low—3?cm and high—26?cm) were filled with defaunated sediment, installed at two sandy sublittoral sites (7–9?m water depth) and sampled after 7, 15, 30, 60 and 90?days, together with the natural bottom sediment. The experiment took place during austral fall (from late March to early July 2010), when both larval and post-larval stages are abundant. At the exposed site, early succession was driven by similar proportions of active and passive dispersers. A sequence from early, late and reference communities was also evident, but container position and size affected the proportional abundance of dispersal types. At the protected site, the successional process started with abundant colonization of active dispersers, but toward the end of the experiment, the proportion of swimmer/crawlers increased, thus resembling the dispersal types found in the natural community. At this site, the position above the sediment affected the proportional abundance of dispersal types, but patch size had no effect. This study highlights that macrobenthic post-larvae can reach at least 26?cm high above the bottom (actively or passively, depending on site exposure), thus playing an important role during early succession of sublittoral soft bottoms. The active or passive use of the sediment–water interphase may also play an important role in the connectivity of benthic populations and in the recovery after large-scale disturbances of sublittoral habitats.  相似文献   

13.
Greenwood  Kimberly S.  Thorp  James H. 《Hydrobiologia》2001,455(1-3):229-236
We examined factors influencing distribution of prosobranch snails with field surveys, lab substrate-choice and movement experiments, and outdoor artificial stream experiments manipulating current, substrate and temperature. Restriction of Lithasia obovata to shallow, isolated rock patches and the more continuous distribution of Pleurocera canaliculatum on diverse substrates (shallow to deep water) seem related to food availability, predator vulnerability, wave resistance and dispersal abilities. Shallow, rocky habitats favored by the relatively fragile-shelled Lithasia maximize the more nutritious, epilithic microalgal food while minimizing wave displacement (firmer substrate) and exposure to molluscivorous fish inhabiting deeper waters. The broader distribution of the heavily-armored Pleurocera is attributed mostly to greater dispersal abilities (e.g. via deep water, gravel pathways), prevalence in more substrate types, and resistance to fish predators, but their relatively small foot may account for low densities in very shallow, wave-swept habitats. Lithasia is vulnerable because of its restriction to isolated, shallow rocky habitats, inability to reach deeper gravel dispersal pathways, and greater susceptibility to cold temperatures (slowing colonization of other habitats). Impoundments increase this threat by blocking inter-reach dispersal and hindering intra-reach dispersal through siltation. Pleurocera's survival is threatened by biofouling from zebra mussels which are more prevalent in depths inhabited by this species.  相似文献   

14.
Diel vertical migration (DVM) is a complex and dynamic behaviour against predation because the reaction of migrating organisms to light intensity plays a primary role, but is modified by other factors. In the relatively shallow but thermally stratified Lake Eymir, Daphnia pulex de Geers utilized vertical refugia afforded by the hypolimnion during both day and night. Differences in general vulnerability to fish predation determined the differences in their mean residence depths (MRDs) of different population categories such as most conspicuous and vulnerable individuals of adult with eggs inhabited the deepest depth, whereas juveniles stayed close the thermocline. In late spring, profoundly high amplitude of displacement within the hypolimnion, probably due to the hypolimnion being well-lit and relatively well-oxygenated for the fish and rather unsafe for the large-sized daphnids, was recorded. Therefore, the large-sized daphnids daytime refuge was close to the bottom whereas at night they moved upward to benefit from warmer water temperature along with food availability in the presence of fish predation but still remained below the thermocline. In summer, the insignificant amplitude of the hypolimnetic, which later became epilimnetic, displacements were probably due to the near-anoxic condition found below the thermocline. This might have deterred the fish, thus providing a safer refuge for daphnids in the below thermocline, which afterwards became the above thermocline. Low oxygen availability was regarded as the summer proximate factor. The abundant food and warmer water conditions found in the below/above thermocline also accounted for absence of DVM in summer. Consequently, this study suggests that DVM by Daphnia is an adaptation that is plastic to changing environmental conditions.  相似文献   

15.
The two-phase life history of most marine fishes and invertebrates has enormous implications for dispersal, population connectivity, and resource management. Pelagic dispersal larvae of marine animals traditionally thought to ensure that populations are widespread, that chances of local extinction are low, and that marine protected areas (MPA) can easily function to replenish both their own populations and those of unprotected areas. Traditionally, dispersal is considered to depend primarily on two variables: pelagic larva duration and far-field currents. These conclusions arise from the open population paradigm and are usually accompanied by a simplifying assumption: larvae are distributed passively by far-field currents. Unfortunately, they ignore the complex reality of circulation and hydrological connectivity of reefs, and do not consider newly-demonstrated behavioural capabilities of coral-reef fish larvae. Far-field circulation varies with depth and often excludes water bodies where propagules are released, and this has important implications for predicting trajectories of even passive larvae. However, larvae are not passive: late-stage larvae of coral-reef fishes can swim faster than currents for long periods, can probably detect reefs at some distance, and can actively find them. This behaviour is flexible, which greatly complicates modelling of larval fish trajectories. Populations at ecological (as opposed to evolutionary) scales are probably less open and more subdivided than previously assumed. All this means that dispersal predictions based solely on far-field water circulation are probably wrong. An emerging view of larval-fish dispersal is articulated that takes these new data and perspectives into account. This emerging view shows that re-evaluation of traditional views in several areas is required, including the contribution of larval-fish biology and dispersal to biodiversity patterns, the way reef fishes are managed, and the way in which MPA are thought to operate. At evolutionary and zoogeographic scales, reef-fish populations are best considered to be open.  相似文献   

16.
Buoyancy acting on plankton, i.e. the difference in specific gravity between plankton and the ambient water, is a function of salinity and temperature. From specific gravity measurements of marine fish eggs salinity appears to be the only determinant of the buoyancy indicating that the thermal expansions of the fish egg and the ambient seawater are equal. We analyze the mechanisms behind thermal expansion in fish eggs in order to determine to what extent it can be justified to neglect the effects of temperature on buoyancy. Our results confirm the earlier assumptions that salinity is the basic determinant on buoyancy in marine fish eggs that, in turn, influence the vertical distributions and, consequently, the dispersal of fish eggs from the spawning areas. Fish populations have adapted accordingly by producing egg specific gravities that tune the egg buoyancy to create specific vertical distributions for each local population. A wide variety of buoyancy adaptations are found among fish populations. The ambient physical conditions at the spawning sites form a basic constraint for adaptation. In coastal regions where salinity increases with depth, and where the major fraction of the fish stocks spawns, pelagic and mesopelagic egg distributions dominate. However, in the larger part of worlds’ oceans salinity decreases with depth resulting in different egg distributions. Here, the principles of vertical distributions of fish eggs in the world oceans are presented in an overarching framework presenting the basic differences between regions, mainly coastal, where salinity increases with depth and the major part of the world oceans where salinity decreases with depth. We show that under these latter conditions, steady-state vertical distribution of mesopelagic fish eggs cannot exist as it does in most coastal regions. In fact, a critical spawning depth must exist where spawning below this depth threshold results in eggs sinking out of the water column and become lost for recruitment to the population. An example of adaptation to such conditions is Cape hake spawning above the critical layer in the Northern Benguela upwelling ecosystem. The eggs rise slowly in the onshore subsurface current below the Ekman layer, hence being advected inshore where the hatched larvae concentrate with optimal feeding conditions.  相似文献   

17.
Summary Distributional relationships are described for post-larval and larval Euphausia superba and Thysanoessa sp. (probably macrura) and post-larval Euphausia frigida collected in 0–70/80 m and 0–175/200 m depth ranges with a MOCNESS sampler north of Elephant Island (61°S, 55°W) during 17–23 March 1984. Larval E. superba (predominantly calyptopes stage 2 and 3) were rare shallower than 80 m at night. Day catches of post-larval E. suberba were small and night catches were primarily near the top of the thermocline above 50 m depth. Thysanoessa sp. occurred throughout the 0–200 m depth range and was abundant in the upper 80 m both night and day. E. frigida migrated to the upper 80 m at night from deeper day depths. Larval stages of E. superba and bost-larval stages of all three species demonstrated independent and variable vertical distribution patterns both night and day. Changes in E. superba abundance and distributional patterns could to a certain extent be associated with observed environmental changes. An increase in larval and decrease in post-larval E. superba abundances between 0–80 m was associated with an intrusion of cold water at depth. At night, vertically restricted concentrations of post-larval E. superba were associated with shallow mixed layer depths, and a significant vertical separation of developmental stages and size categories was observed only during periods of stratification in the upper 80 m. Fluctuations in the distribution and abundance of Thysanoessa sp. and distribution of E. frigida did not appear to be influenced by physical parameters within the upper 80 m. Within the 0–80 m depth range, the distributions of these two species differed from each other and from E. superba and showed large tow to tow variability that could not be related to physical parameters in the upper water column.  相似文献   

18.
The deep reef refugia hypothesis proposes that deep reefs can act as local recruitment sources for shallow reefs following disturbance. To test this hypothesis, nine polymorphic DNA microsatellite loci were developed and used to assess vertical connectivity in 583 coral colonies of the Caribbean depth‐generalist coral Montastraea cavernosa. Samples were collected from three depth zones (≤10, 15–20 and ≥25 m) at sites in Florida (within the Upper Keys, Lower Keys and Dry Tortugas), Bermuda, and the U.S. Virgin Islands. Migration rates were estimated to determine the probability of coral larval migration from shallow to deep and from deep to shallow. Finally, algal symbiont (Symbiodinium spp.) diversity and distribution were assessed in a subset of corals to test whether symbiont depth zonation might indicate limited vertical connectivity. Overall, analyses revealed significant genetic differentiation by depth in Florida, but not in Bermuda or the U.S. Virgin Islands, despite high levels of horizontal connectivity between these geographic locations at shallow depths. Within Florida, greater vertical connectivity was observed in the Dry Tortugas compared to the Lower or Upper Keys. However, at all sites, and regardless of the extent of vertical connectivity, migration occurred asymmetrically, with greater likelihood of migration from shallow to intermediate/deep habitats. Finally, most colonies hosted a single Symbiodinium type (C3), ruling out symbiont depth zonation of the dominant symbiont type as a structuring factor. Together, these findings suggest that the potential for shallow reefs to recover from deep‐water refugia in M. cavernosa is location‐specific, varying among and within geographic locations likely as a consequence of local hydrology.  相似文献   

19.
Water currents are a dominant feature of the open sea and often play an important part in the life cycle of the fish that live there. For over three decades, a focus of research at Lowestoft has been the role of tidal water currents as a part of wider understanding of the population dynamics of plaice (Pleuronectes platessa) in the North Sea. Increasingly sophisticated telemetry methods have been developed and used, initially to describe the migratory behaviour of individual fish, and latterly to describe the spatial dynamics of whole populations. Here, the authors review cues and clues for environmental transport at different life stages, with a critical evaluation of the facultative use of selective tidal stream transport in relation to water current speed. The clues that trigger movement into mid-water by adult fish are reconsidered in light of new findings. Finally, the orientation capabilities of plaice, together with evidence of repeat migrations and spawning site fidelity were examined.  相似文献   

20.
J. Easton  M. Gophen 《Hydrobiologia》2003,491(1-3):91-100
Diel vertical migration (DVM) behaviour is a predator avoidance mechanism observed within many zooplankton species in the presence of zooplanktivorous fish. A 24-h survey was carried out in June 1998 to investigate diel variation in the vertical distribution of fish, zooplankton and phytoplankton (chlorophyll) in Lake Kinneret, Israel. Fish revealed diel variation in vertical distribution but had no spatial overlap with zooplankton, and consequently no apparent influence on zooplankton dispersal. Zooplankton revealed some diel variation in distribution being affected by thermocline and oxycline position and movement of the internal the internal seiche wave. Cyclopoid species closely follow the movement of the seiche wave implying that, due to their greater motility, they are following conditions that are suitable to them. The Cladocera species and small rotifers only partly, which may be part of their phototaxic behaviour. Physical forces like convection, horizontal and vertical forcing probably have a role in contributing to a homogeneous distribution of the plankton by preventing stratification or interfering with the more motile zooplankton which may be attempting to migrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号