首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 988 毫秒
1.
The cell wall of Staurastrum luetkemuelleri Donnat & Ruttner was examined with scanning electron microscope (SEM) using whole cells, in thin sections with transmission electron microscope (TEM), and in air dried whole cells and unstained thin sections with X-ray microanalysis in the scanning-transmission electron microscope (STEM). The cell wall was ornamented with spines and wartlike structures. Spines were solid structures, consisting of deposits of cell wall material between two main cell wall layers. The wart-like structures were pore organs extending through the cell wall and the mucilaginous layer outside the cell wall. The pore cylinder was surrounded by deposits of cell wall material similar to the ones in the spines. X-ray microanalysis of selected areas on whole cells from a natural population showed iron accumulation in discrete locations on the cell extensions of S. luetkemuelleri. In the unstained thin sections iron was found only in the cell wall deposits in the spines. Cells grown in laboratory cultures failed to show iron accumulation regardless of readdition of iron-EDTA (Fe-EDTA) to the culture medium.  相似文献   

2.
The interaction between iron and copper has been discussed in association with human health and diseases for many years. Ceruloplasmin, a multi-copper oxidase, is mainly involved in iron metabolism and its genetic defect, aceruloplasminemia (ACP), shows neurological disorders and diabetes associated with excessive iron accumulation, but little is known about the state of copper in the brain. Here, we investigated localization of these metals in the brains of three patients with ACP using electron microscopes equipped with an energy-dispersive x-ray analyzer. Histochemically, iron deposition was observed mainly in the basal ganglia and dentate nucleus, and to lesser degree in the cerebral cortex of the patients, whereas copper grains were not detected. X-ray microanalysis identified two types of iron-rich particles in their brains: dense bodies, namely hemosiderins, and their aggregated inclusions. A small number of hemosiderins and most inclusions contained a significant amount of copper which was enough for distinct Cu x-ray images. These copper-containing particles were observed more frequently in the putamen and dentate nucleus than the cerebral cortex. Coexistence of iron and copper was supported by good correlations in the molecular ratios between these two metals in iron-rich particles with Cu x-ray image. Iron-dependent copper accumulation in iron-rich particles may suggest that copper recycling is enhanced to meet the increased requirement of cuproproteins in iron overload brain. In conclusion, the iron-rich particles with Cu x-ray image were found in the ACP brain.  相似文献   

3.
The effects of the calcium inonophore A 23187 on growing pollen tubes of Lilium longiflorum Thunb. cv. Ace were investigated with the light and electron microscope. Tip growth is slowed down and stopped within 20 min after application of 5x10-5 M ionophore A 23187. The main effects are the disappearance of the clear zone at the pollen tube tip and a thickening of the cell wall at the tip and at the pollen tube flanks. This effect on cell wall formation is confirmed under the electron microscope: The vesicular zone in treated pollen tubes is reduced, numerous vesicular contents are irregularly integrated in the pollen tube wall not only in the tip, but over a long distance of the pollen tube wall. In addition, effects on mitochondria and dictyosomes are observed. These results are interpreted as a disorientation of the Ca2+-based orientation mechanism of exocytosis after equilibration of the Ca2+-gradient  相似文献   

4.
The selective attack of meteoritic minerals by chlorine has been used to reveal structures, formed during prolonged extra-terrestrial cooling, in certain iron meteorites. Several minerals, including low-nickel metal (kamacite), iron sulphide (troilite) and chromite (Reichenbach lamellae), are preferentially corroded by chlorine at 350°C, leaving other minerals suitably for examination by the scanning electron microscope and the electron microprobe. Information on elemental distribution in relation to topography has been obtained over the boundary of a plessite (a fine-grained intergrowth of kamacite and taenite) and also for kamacite with its associated schreibersite which enclosed Reichenbach lamallae.  相似文献   

5.
Summary A study of the Patella vulgata radula has been made using: the scanning electron microscope in its normal and compositional contrast modes of operation, the electron microprobe analyser, ion etching with argon ions and microhardness testing.Only iron, silicon and small amounts of sulphur were detected in the radula. The teeth can be subdivided into a cusp, a junctional area where the cusp is joined to the base, and the base which is embedded in the radular membrane. From a study of longitudinal vertical and transverse sections of the mature teeth it was found that the cusp could be subdivided into a posterior iron-rich area (44–51% Fe, 1–6% Si) and an anterior silicon-rich area (22–30% Fe, 27–32% Si). The junctional zone consisted of a poorly mineralised layer at its border with the cusp and an iron-rich layer where it joined the base. The upper part of the base (5% Fe, 16% Si) could be clearly differentiated from the silicon-rich anterior and lower parts of the base (3–4% Fe, 28–35% Si). No minerals were detected in the membrane. The changes in the mineral content of the teeth cusps along the length of the radula were studied. Iron appeared in the cusps at the 25th row and the concentration increased to 28% at the 50th row. The iron was here evenly distributed throughout the cusp. Silicon appeared in the anterior part of the cusp at the 50th row and as it increased in concentration so the iron was displaced, and at the same time the concentration of iron increased in the posterior part of the cusp. Mineralization appeared to be complete by the 150th row.The teeth cusps appear to consist of 800 Å fibres grouped into 1 thick bundles and the tooth appears to be covered by a thin enamel-like layer. It is suggested that the fibres contain the silicon-rich phase and the matrix the iron-rich phase.The significance of the arrangement of the fibres and the distribution of the minerals are discussed with relation to the function of the teeth.We wish to thank Mr. A. Rees and Mr. A. Davies for their technical assistance; Prof. Lewis and Dr. James for the use of the Electron Microprobe; and the S.R.C. for their financial support.  相似文献   

6.
Microorganisms colonizing the exoskeletons of the tube worm Riftia pachyptila are described at the ultrastructural level. The prokaryotic cells from the worm tube wall differ from those colonizing the exoskeleton outer surface in the presence of an electron dense granule. The morphology and distribution of these bacteria-like cells are described. Prokaryotic organisms are assembled in nodules which increased in size in the oldest part of the exoskeleton. The aspect, location and elemental composition of the intracellular granules are determined. Most of them (100 nm in diameter) are located close to the cell membrane and exhibit a homogeneous and amorphous content. EDX and EFTEM microanalyses show that these structures contain phosphorus, oxygen and iron. All together these data suggest that these granules are iron polyphosphates. These structures may act as energy sources for making ATP during anoxic conditions as existing in hydrothermal environments.  相似文献   

7.
Satake  Kenichi 《Hydrobiologia》2000,433(1-3):25-30
Iron accumulation was studied in shoots of the aquatic moss Drepanocladus fluitans (Hedw.) Warnst collected from an acid lake and stream. The concentration of iron in the shoots of the moss from Lake Usoriko (pH 3.4–3.8) increased from the tip toward the base and ranged from 0.07 to 10% on a dry weight basis. The iron concentration in the lake water was 0.15 mg 1–1. In contrast, iron concentration in the shoots of D. fluitans from Kashiranashigawa stream (pH 4.2–4.7), one of the streams flowing into Lake Usoriko, was only 0.02 mg g–1 at the shoot tip and 0.3% at the shoot base, while that in the stream water was <0.02 mg 1–1. Transmission electron microscopy using a X-ray microanalyzer (TEM-XMA) study revealed accumulation of needle-like iron crystals on the cell wall and decomposed cell components. In addition, many rod-type bacteria were found in the accumulated iron deposits.The accumulation of iron in the shoots of D. fluitans is due to two processes: biological accumulation of essential iron dissolved in acid water, and abiological crystal growth on the surface of organic particulate material including the cell wall.  相似文献   

8.
F. B. Sampson 《Grana》2013,52(2):61-73
Hedycarya has pollen in permanent tetrads. H. arborea, the New Zealand species, differs from others studied, in having a cap of more or less imperforate tectum at the distal pole of each grain. This polar region is not an aperture and the pollen tube emerges through a papillose part of the external wall of each grain. Transmission electron microscope studies of immature and mature tetrads reveal a most unusual exine structure. "Radial processes" develop by accumulation of sporopollenin around unit membranes of similar dimensions to the plasmalemma, and extend from just beyond the intine to the tectal region. The entire exine is considered ectexinous. During development, members of a tetrad are interconnected by cytoplasmic channels and the synchronous division into generative and vegetative nuclei within each tetrad is attributed to their presence. The channels become closed by the deposition of intine. Comparisons are made with exine structure in some other members of the woody Ranales and with some other plants with tetrad pollen.  相似文献   

9.
Summary Pollen tubes ofLilium longiflorum were fixed with glutaraldehyde and investigated unsectioned with the Oxford scanning proton microprobe (SPM). Two-dimensional maps which show the distribution and concentration of phosphorus, sulphur, chlorine, potassium, calcium, iron, copper, zinc and arsenic are presented. The maps show that, within the pollen tube tip region, calcium and zinc exhibit relatively steep longitudinal concentration gradients compared to the more flat distributions of phosphorus and sulphur. Chlorine, potassium, iron and copper appear equally distributed along the tube. All elements with the expception of arsenic show the highest concentration within the cell protoplasm and not in the cell wall. Additional signals of arsenic, chlorine and potassium originate from the remaining fixative dried around the tube, containing also the free ions of the cell. The arsenic signals originate exclusively from the buffer used during fixation. The different maps are compared and discussed in relation to their significance to the pollen tubes.Abbreviations EDAX energy dispersive analysis of X-rays - EIXE electron induced X-ray emission - PIXE proton induced X-ray emission - SPM scanning proton microprobe  相似文献   

10.
The ultrastructure and development of Bacillus penetrans in root-knot nematodes, Meloidogyne spp., was studied with a transmission electron microscope. Host infection was by a germ tube from the cup-shaped sporangium containing the endospore. The prokaryotic vegetative cells contained septa formed by an ingrowth of the inner layer of the trilaminate cell wall and were associated with mesosomes. Structure of the endospore was similar to other bacteria with a spore protoplast enclosed within two cortical layers and three spore coats. An exosporium which may function in attachment and host specificity surrounded the endospore. Ultrastructural changes accompanying sporulation were similar to those reported for other endospore-forming bacteria but with some parasite specialization. The filamentous vegetative growth was characteristic of some Actinomycetales. Endospore development at the apices of dichotomously branched filaments of the thallus resembled the genus Actinobifida.  相似文献   

11.

Background  

Nutrient minerals are essential yet potentially toxic, and homeostatic mechanisms are required to regulate their intracellular levels. We describe here a genome-wide screen for genes involved in the homeostasis of minerals in Saccharomyces cerevisiae. Using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), we assayed 4,385 mutant strains for the accumulation of 13 elements (calcium, cobalt, copper, iron, potassium, magnesium, manganese, nickel, phosphorus, selenium, sodium, sulfur, and zinc). We refer to the resulting accumulation profile as the yeast 'ionome'.  相似文献   

12.
Pathogenesis of Vibrio parahaemolyticus is not clearly understood. Effects of iron on the bacterial proliferation and production of thermostable direct hemolysin (TDH) in intraperitoneal infected mice were studied. Injection of bacterial culture in the presence of ferric ammonium citrate (100 μg/ml) significantly enhanced the lethality for mice, and simultaneously activated bacterial proliferation in vivo. The iron-limited cultures showed better proliferation than those iron-rich cultures in response to the addition of supplementary iron source. Production of TDH by the hemolytic strains ST550 and D62 was higher in the iron-limited cultures than the iron-rich cultures. Production of TDH by both the iron-limited or iron-rich cultures was inhibited by the addition of iron. In conclusion, the virulence enhancement effect of iron in V. parahaemolyticus was probably by activating bacterial proliferation in vivo and not by stimulating the production of TDH. V. parahaemolyticus precultured in iron-limited condition may be more adaptable to in vivo environment.  相似文献   

13.
Although phosphate concentrations have been reduced, the rivers Meuse and Rhine are still polluted with sulphate, which most probably affects vegetation development in newly created riverine wetlands. The influence of flooding with river water rich in sulphate was tested on three soil types from floodplains of the river Meuse using flow-through and batch experiments. Soils were selected for contrasting concentrations of iron and organic matter and originated from a floating fen (iron-poor, organic), an alder carr (iron-rich, organic) and a clay pit (iron-rich, low in organic matter). Flooding induced mobilisation of phosphate. Sulphate only enhanced this effect in the alder carr soil, where sulphide and phosphate competed for binding to iron. Only in the floating fen soil did the addition of sulphate result in the formation of free sulphide, which reduced the growth of Glyceria maxima, serving as a phytometer. In addition, the floating soil started to sink, due to falling methane concentrations. In the different soil types methane production was hampered by the presence of more favourable electron acceptors such as sulphate in the water and Fe(III) in the soil. It was concluded that the effects of inundation with sulphate-polluted water strongly depend on the soil type: under iron-poor circumstances, free sulphide may accumulate, leading to phytotoxicity, while in soils rich in iron, sulphide toxicity is prevented, but phosphate availability may be increased. In addition, shortage of easily degradable organic matter can limit the formation of potential toxicants such as ammonium, iron and sulphide. Results are discussed in terms of their implications for nature management.  相似文献   

14.
Spartina alterniflora, salt marsh cordgrass, is the dominant angiosperm of a large majority of regularly flooded marshes of the Atlantic and Gulf coasts of the United States. In Louisiana, this species often occurs in two distinct zones: a more productive streamside site (adjacent to tidal creeks), and a less productive and sparsely populated inland area. Reddish-brown deposits are present on the roots of streamside Spartina and visually absent from the roots of inland plants. A study of streamside roots using scanning electron microscope and energy dispersive X-ray microanalysis demonstrated that the coatings are restricted to the outer cell wall of the epidermis and are composed primarily of iron. Roots of inland plants have minor iron deposits. Citrate-dithionite extraction of the coatings and subsequent atomic absorption spectrophotometric analysis confirmed these deposits to be iron, although some manganese was present. Approximately 50 times more iron was found on streamside roots compared to roots from inland plants. These results indicate a better developed oxidized rhizosphere associated with streamside Spartina roots than the inland and, hence, the potential for a more favorable environment in which nutrient uptake may proceed.  相似文献   

15.
Summary The wall ofPinus sylvestris pollen and pollen tubes was studied by electron microscopy after both rapid-freeze fixation and freeze-substitution (RF-FS) and chemical fixation. Fluorescent probes and antibodies (JIM7 and JIM5) were used to study the distribution of esterified pectin, acidic pectin and callose. The wall texture was studied on shadow-casted whole mounts of pollen tubes after extraction of the wall matrix. The results were compared to current data of angiosperms. TheP. sylvestris pollen wall consists of a sculptured and a nonsculptured exine. The intine consists of a striated outer layer, that stretches partly over the pollen tube wall at the germination side, and a striated inner layer, which is continuous with the pollen tube wall and is likely to be partly deposited after germination. Variable amounts of callose are present in the entire intine. No esterified pectin is detected in the intine and acidic pectin is present in the outer intine layer only. The wall of the antheridial cell contains callose, but no pectin is detectable. The wall between antheridial and tube cell contains numerous plasmodesmata and is bordered by coated pits, indicating intensive communication with the tube cell. Callose and esterified pectin are present in the tip and the younger parts of the pollen tubes, but both ultimately disappear from the tube. Sometimes traces in the form of bands remain present. No acidic pectin is detected in either tip or tube. The wall of the pollen tube tip has a homogenous appearance, but gradually attains a fibrillar character at aging, perhaps because of the disappearance of callose and pectin. No secondary wall formation or callose lining can be seen wilh the electron microscope. The densily of the cellulose microfibrils (CMF) is much lower in the tip than in the tube. Both show CMF in all but axial and nontransverse orientations. In conclusion,P. sylvestris and angiosperm pollen tubes share the presence of esterified pectin in the tip, the oblique orientations of the CMF, and the gradual differentiation of the pollen tube wall, indicating a possible relation to tip growth. The presence of acidic pectin and the deposition of a secondary-wall or callose layer in angiosperms but not inP. sylvestris indicales that these characteristics are not related to tip growth, but probably represent adaptations to the fast and intrastylar growth of angiosperms.Abbreviations CMF cellulose microfibrils - II inner intine - NE nonsculptured exine - OI outer intine - RF-FS rapid-freeze fixation freeze-substitution - SE sculptured exine - SER smooth endoplasmic reliculum - SV secretory vesicles  相似文献   

16.
Development of the echinate pollen grains inFarfugium (Compositae: Senecioneae) has been studied by a combination of transmission electron microscopy and field emission scanning electron microscopy with a freeze fractured method. The inner surface of the callose wall surrounding each microspore does not possess an echinate pattern before primexine deposition begins. The primexine formation coincides with the initiation of spines. The freeze fractured primexine shows probacula which form transverse rods. The developing exine has an inner spongy substructure. The endexine is formed by the accumulation of the electron dense lamellae with white lines after the dissolution of the callose wall. In the present study, it is confirmed that the developmental process of pollen formation revealed in the field emission scanning electron microscope is consistent with the results obtained using the transmission electron microscope.  相似文献   

17.
Fine structure of germinatingPenicillium megasporum conidia   总被引:1,自引:0,他引:1  
Summary Penicillium megasporum conidia have spore walls consisting of several layers. There is no visible change in the outer wall layers during spore germination, but the inner layers increases in thickness on only one side of the spore, resulting in a rupture of the outer wall layers and subsequently in germ tube formation. Invaginations in the plasma membrane disappear as the germ tube forms and emerges, and the nucleus migrates into the developing germ tube. Mitochondria gather at the base of the germ tube during its formation. During germination, the amount of lipid in the spore decreases and portions migrate into the germ tube. Membrane-bound, electron dense bodies are present in resting spores. These bodies decrease in size as germination proceeds, and the cytoplasm in the developing germ tube appears much more electron dense than the cytoplasm within the spore.  相似文献   

18.
Abstract: The spore Rhabdosporites (Triletes) langii (Eisenack) Richardson, 1960 is abundant and well preserved in Middle Devonian (Eifelian) ‘Middle Old Red Sandstone’ deposits from the Orcadian Basin, Scotland. Here it occurs as dispersed individual spores and in situ in isolated sporangia. This paper reports on a detailed light microscope (LM), scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis of both dispersed and in situ spores. The dispersed spores are pseudosaccate with a thick walled inner body enclosed within an outer layer that was originally attached only over the proximal face. The inner body has lamellate/laminate ultrastructure consisting of fine lamellae that are continuous around the spore and parallel stacked. Towards the outer part of the inner body these group to form thicker laminate structures that are also continuous and parallel stacked. The outer layer has spongy ultrastructure. In situ spores preserved in the isolated sporangia are identical to the dispersed forms in terms of morphology, gross structure and wall ultrastructure. The sporangium wall is two‐layered. A thick coalified outer layer is cellular and represents the main sporangium wall. This layer is readily lost if oxidation is applied during processing. A thin inner layer is interpreted as a peritapetal membrane. This layer survives oxidation as a tightly adherent membranous covering of the spore mass. Ultrastructurally it consists of three layers, with the innermost layer composed of material similar to that comprising the outer layer of the spores. Based on the new LM, SEM and TEM information, consideration is given to spore wall formation. The inner body of the spores is interpreted as developing by centripetal accumulation of lamellae at the plasma membrane. The outer layer is interpreted as forming by accretion of sporopollenin units derived from a tapetum. The inner layer of the sporangium wall is considered to represent a peritapetal membrane formed from the remnants of this tapetum. The spore R. langii derives from aneurophytalean progymnosperms. In light of the new evidence on spore/sporangium characters, and hypotheses of spore wall development based on interpretation of these, the evolutionary relationships of the progymnosperms are considered in terms of their origins and relationship to the seed plants. It is concluded that there is a smooth evolutionary transition between Apiculiretusispora‐type spores of certain basal euphyllophytes, Rhabdosporites‐type spores of aneurophytalean progymnosperms and Geminospora‐/Contagisporites‐type spores of heterosporous archaeopteridalean progymnosperms. Prepollen of basal seed plants (hydrasperman, medullosan and callistophytalean pteridosperms) are easily derived from the spores of either homosporous or heterosporous progymnosperms. The proposed evolutionary transition was sequential with increasing complexity of the spore/pollen wall probably reflecting increasing sophistication of reproductive strategy. The pollen wall of crown group seed plants appears to incorporate a completely new developmental mechanism: tectum and infratectum initiation within a glycocalyx‐like Microspore Surface Coat. It is unclear when this feature evolved, but it appears likely that it was not present in the most basal stem group seed plants.  相似文献   

19.
The outer membranes (OM) ofDesulfovibrio vulgaris were isolated from cells grown in either iron-rich or iron-free medium by the Sarkosyl method. OMs from iron-free cells had a greatly simplified band pattern on PAGE, but retained the lipopolysaccharide and three major polypeptides (OMPs 1, 2, and 3) seen in OMs from iron-rich cells. These OMPs may be involved in iron uptake by the bacteria. Incubation of iron-free cells with ferrous sulfate prior to OM purification resulted in the increased retention of some bands normally seen only in iron-rich OM, indicating that iron may protect these OM proteins from Sarkosyl treatment. Iron is thus an important element in the stabilization of theD. vulgaris OM  相似文献   

20.
Magnetic material in the European eel (Anguilla anguilla L.) was investigated by a combination of magnetic susceptibility measurements, energy dispersive X-ray fluorescence analysis and transmission electron microscopy. It was shown that the magnetic material is associated with iron. The main part of the iron is present in the form of iron-rich particles with irregular shapes about 100-3000 A large. The structures of magnetite (Fe3O4), hematite (alpha-Fe2O3) and alpha-iron (bcc structure) were identified. The particles are composed of more than one of these phases with magnetite being a minority phase when present. The iron-rich particles found in the eel are different from the materials reported for bacteria or bees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号