首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Overexpression of the cyclin-dependent kinase inhibitor p27 and exposure to low temperature (30 degrees C) represent two strategies to establish controlled proliferation processes for production of therapeutic proteins using Chinese hamster ovary (CHO) cells. Here we analyze the effect of growth inhibition on the quality of the human model glycoprotein SEAP (secreted alkaline phosphatase) for both strategies in monoclonal CHO-derived cell lines. Separation of purified SEAP samples using two-dimensional gel electrophoresis showed that production by proliferation-controlled CHO cultures did not alter the overall integrity of the product. Further, oligosaccharide profiles were compared using HPEC-PAD analysis. No differences were detectable between SEAP profiles obtained from p27 growth-arrested and proliferating cultures. However, production at 30 degrees C led to a significant increase in the degree of sialylation, an effect that is generally considered beneficial for the in vivo efficacy of protein therapeutics. In the production context presented here, SEAP expression is controlled by the tetracycline- (tet) repressible gene regulation system. Here we show low temperature-induced upregulation of the tetracycline-dependent transactivator (tTA). This induction has been shown by Northern blot analysis to occur at the mRNA level and is independent of the promoters driving the transactivator. We also describe a novel bottleneck in productivity at low temperature found in p27 growth-arrested CHO cells cultivated at 30 degrees C.  相似文献   

2.
3.
Metabolic changes during cell growth inhibition by p27 overexpression   总被引:2,自引:0,他引:2  
The overexpression of p27, a cyclin-dependent kinase (CDK) inhibitor, has been shown to effectively inhibit cell growth at the G1-phase of different cell lines, potentiating a valid genetic strategy for cell proliferation control. In order to characterize the energy requirements after p27 overexpression in CHO cells expressing SEAP (secreted form of the human alkaline phosphatase enzyme), key metabolic parameters were evaluated. Cell growth inhibition led to a significant increase in cell size concomitant with a 2-fold increase in cell protein content. The simultaneous increase of the intracellular proteolytic activity with protein content suggests higher protein synthesis. A general 2-fold increase in oxygen, glutamine and glucose consumption rates, coupled with an increase in lactate and ammonia production was observed. p27 overexpression led to a significant increase in the intracellular pool of AMP (8.5-fold), ADP (6-fold) and, more uncommonly, ATP (4.5-fold). Nevertheless, cells were able to maintain the equilibrium among the three adenine nucleotides since both the ATP/ADP ratio and the energy charge values remained similar to those observed with non-growth inhibited cells. This work shows that the observed 4-fold increase in SEAP specific productivity after cell growth inhibition by p27, occurred concomitantly with a higher expenditure of cell energy. This characterization of cell metabolism becomes important in demonstrating the applicability of growth inhibition systems.  相似文献   

4.
5.
The effects of cell cycle inhibition on the expression of the multidrug resistance transporter P-glycoprotein (P-gp) as well as of the cyclin-dependent kinase (CDK) inhibitors p27(Kip1) and p21(WAF-1) were investigated in DU-145 prostate tumor spheroids. With increasing spheroid size the number of cells in the G0/G1 phase augmented, whereas the number of cells in the G2/M phase and the S phase of the cell cycle declined. The number of G0/G1 cells was elevated after incubation with either mimosine, staurosporine or serum-free medium. Mitomycin C and roscovitine increased the number of S phase cells. Roscovitine additionally increased cells in the G2/M phase. Incubation in serum-free medium upregulated p21(WAF-1), p27(Kip1) and P-gp. Mimosine treatment resulted in upregulation of p27(Kip1) and P-gp, whereas p21(WAF-1) remained unchanged. Upon roscovitine treatment p27(Kip1) and p21(WAF-1) were downregulated, whereas P-gp was unaltered. Mitomycin C treatment resulted in downregulation of p27(Kip1) and p21(WAF-1); no significant change in P-gp levels was observed. Staurosporine induced upregulation of p21(WAF-1) whereas p27(Kip1) remained unaltered. P-gp was downregulated upon staurosporine treatment, which was owing to an elevation of intracellular reactive oxygen species by this compound. It is concluded that upregulation of P-gp in G0/G1 phase cells requires coexpression of the CDK inhibitor p27(Kip1) but not the CDK inhibitor p21(WAF-1).  相似文献   

6.
p27(kip1), a cyclin-dependent kinase (CDK) inhibitor (CKI), generally suppresses CDK activity in proliferating cells. Although another role of p27 in cell migration has been recently suggested in vitro, the physiological importance of p27 in cell migration remains elusive, as p27-deficient mice have not shown any obvious migration-defect-related phenotypes. Here, we show that Cdk5, an unconventional neuronal CDK, phosphorylates and stabilizes p27 as an upstream regulator, maintaining the amount of p27 in post-mitotic neurons. In vivo RNA interference (RNAi) experiments showed that reduced amounts of p27 caused inhibition of cortical neuronal migration and decreased the amount of F-actin in the processes of migrating neurons. The Cdk5-p27 pathway activates an actin-binding protein, cofilin, which is also shown to be involved in cortical neuronal migration in vivo. Our findings shed light on a previously unknown new relationship between CDK and CKI in G0-arrested cells that regulates cytoskeletal reorganization and neuronal migration during corticogenesis.  相似文献   

7.
Progression through the G1/S transition commits cells to synthesize DNA. Cyclin dependent kinase 2 (CDK2) is the major kinase that allows progression through G1/S phase and subsequent replication events. p27 is a CDK inhibitor (CKI) that binds to CDK2 to prevent premature activation of this kinase. Speedy (Spy1), a novel cell cycle regulatory protein, has been found to prematurely activate CDK2 when microinjected into Xenopus oocytes and when expressed in mammalian cells. To determine the mechanism underlying Spy1-induced proliferation in mammalian cell cycle regulation, we used human Spy1 as bait in a yeast two-hybrid screen to identify interacting proteins. One of the proteins isolated was p27; this novel interaction was confirmed both in vitro, using bacterially expressed and in vitro translated proteins, and in vivo, through the examination of endogenous and transfected proteins in mammalian cells. We demonstrate that Spy1 expression can overcome a p27-induced cell cycle arrest to allow for DNA synthesis and CDK2 histone H1 kinase activity. In addition, we utilized p27-null cells to demonstrate that the proliferative effect of Spy1 depends on the presence of endogenous p27. Our data suggest that Spy1 associates with p27 to promote cell cycle progression through the G1/S transition.  相似文献   

8.
Tobacco NT1 cell suspension cultures secreting active human secreted alkaline phosphatase (SEAP) were generated for the first time as a model system to study recombinant protein production, secretion, and stability in plant cell cultures. The SEAP gene encodes a secreted form of the human placental alkaline phosphatase (PLAP). During batch culture, the highest level of active SEAP in the culture medium (0.4 U/mL, corresponding to approximately 27 mg/L) was observed at the end of the exponential growth phase. Although the level of active SEAP decreased during the stationary phase, the activity loss did not appear to be due to SEAP degradation (based on Western blots) but due to SEAP denaturation. The protein-stabilizing agents polyvinylpirrolidone (PVP) and bacitracin were added extracellularly to test for their ability to reduce the loss of SEAP activity during the stationary phase. Bacitracin (100 mg/L) was the most effective treatment at sustaining activity levels for up to 17 days post-subculture. Commercially available human placental alkaline phosphatase (PLAP) was used to probe the mechanism of SEAP deactivation. Experiments with PLAP in sterile and conditioned medium corroborated the denaturation of SEAP by factors generated by cell growth and not due to simple proteolysis. We also show for the first time that the factors promoting activity loss are heat labile at 95 degrees C but not at 70 degrees C, and they are not inactivated after a 5 day incubation period under normal culture conditions (27 degrees C). In addition, there were no significant changes in pH or redox potential when comparing sterile and cell-free conditioned medium during PLAP incubation, indicating that these factors were unimportant.  相似文献   

9.
Docosahexaenoic acid (DHA), a PUFA of the n-3 family, inhibited the growth of FM3A mouse mammary cancer cells by arresting their progression from the late-G(1) to the S phase of the cell cycle. DHA upregulated p27(Kip1) levels by inhibiting phosphorylation of mitogen-activated protein (MAP) kinases, i.e., ERK1/ERK2. Indeed, inhibition of ERK1/ERK2 phosphorylation by DHA, U0126 [chemical MAPK extracellularly signal-regulated kinase kinase (MEK) inhibitor], and MEK(SA) (cells expressing dominant negative constructs of MEK) resulted in the accumulation of p27(Kip1). MAP kinase (MAPK) inhibition by DHA did not increase p27(Kip1) mRNA levels. Rather, this fatty acid stabilized p27(Kip1) contents and inhibited MAPK-dependent proteasomal degradation of this protein. DHA also diminished cyclin E phosphorylation, cyclin-dependent kinase-2 (CDK2) activity, and phosphorylation of retinoblastoma protein in these cells. Our study shows that DHA arrests cell growth by modulating the phosphorylation of cell cycle-related proteins.  相似文献   

10.
The p27(Kip1) cyclin-dependent kinase inhibitor translocates in response to transforming growth factor-beta to a Cdk2-cyclin E complex inhibiting its catalytic activity, but the p27(Kip1) protein levels are unaffected [1]. We show here that transforming growth factor-beta induces the accumulation of a form of p27(Kip1) representing a subpopulation of total p27(Kip1) in growth-arrested Mv1Lu epithelial cells. The inducible p27(Kip1) is detectable only by a specific p27(Kip1) monoclonal antibody recognizing a native form of p27(Kip1). The increase in this subset of p27(Kip1) correlates with G(1) arrest and withdrawal of the cells from the cycle induced by transforming growth factor-beta, serum starvation, or contact inhibition. In contrast to the majority of p27(Kip1) in the cells, the transforming growth factor-beta-inducible p27(Kip1) is devoid of cyclin-dependent kinase/cyclin interactions. The results indicate that growth arresting treatments induce the accumulation of non-cyclin-dependent kinase-bound p27(Kip1), which may function as a reservoir for inhibition of Cdk2-cyclin E activities.  相似文献   

11.
The G1/S phase restriction point is a critical checkpoint that interfaces between the cell cycle regulatory machinery and DNA replicator proteins. Here, we report a novel function for the cyclin-dependent kinase inhibitor p27Kip1 in inhibiting DNA replication through its interaction with MCM7, a DNA replication protein that is essential for initiation of DNA replication and maintenance of genomic integrity. We find that p27Kip1 binds the conserved minichromosome maintenance (MCM) domain of MCM7. The proteins interact endogenously in vivo in a growth factor-dependent manner, such that the carboxyl terminal domain of p27Kip1 inhibits DNA replication independent of its function as a cyclin-dependent kinase inhibitor. This novel function of p27Kip1 may prevent inappropriate initiation of DNA replication prior to S phase.  相似文献   

12.
In eukaryotic cells, protein kinase CKII is required for progression through the cell division cycle. We recently reported that CKBBP1/SAG/ROC2/Rbx2 associates with the beta-subunit of CKII and is phosphorylated by purified CKII in the presence of ATP in vitro. In this report, we demonstrate that CKBBP1 is efficiently phosphorylated in vitro by purified CKII in the presence of GTP and by heparin-sensitive protein kinase in HeLa cell extract. Mutational analysis indicates that CKII phosphorylates threonine at residue 10 within CKBBP1. Furthermore, CKBBP1 is phosphorylated in vivo and threonine to alanine mutation at residue 10 abrogates the phosphorylation of CKBBP1 observed in vivo, indicating that CKII is a major kinase that is responsible for in vivo phosphorylation of CKBBP1. As compared with the wild-type CKBBP1 or CKBBP1T10E (in which threonine 10 is replaced by glutamate), overexpression of nonphosphorylatable CKBBP1 (CKBBP1T10A) results in accumulation of IkappaBalpha and p27Kip1. Experiments using proteasome inhibitor MG132 and CKII inhibitor 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole suggest that the accumulation of IkappaBalpha and p27Kip1 results primarily from the reduction of proteasomal degradation in cells expressing CKBBP1T10A, and that CKII-mediated CKBBP1 phosphorylation is required for efficient degradation of IkappaBalpha and p27Kip1. Overexpression of CKBBP1T10A in HeLa cells suppresses cell proliferation and causes accumulation of G1/G0 peak of the cell cycle. Taken together, our results indicate that CKII may control IkappaBalpha and p27Kip1 degradation and thereby G1/S phase transition through the phosphorylation of threonine 10 within CKBBP1.  相似文献   

13.
The cyclin-dependent kinase (CDK) inhibitor p27 binds and inhibits the kinase activity of several CDKs. Here we report an analysis of the behavior and partners of p27 in Swiss 3T3 mouse fibroblasts during normal mitotic cell cycle progression, as well as in cells arrested at different stages in the cycle by growth factor deprivation, lovastatin treatment, or ultraviolet (UV) irradiation. We found that the level of p27 is elevated in cells arrested in G0 by growth factor deprivation or contact inhibition. In G0, p27 was predominantly monomeric, although some portion was associated with residual cyclin A.Cdk2. During G1, all of p27 was associated with cyclin D1.Cdk4 and was then redistributed to cyclin A.Cdk2 as cells entered S phase. The loss of the monomeric p27 pool as cyclins accumulate in G1 is consistent with the in vivo and in vitro data showing that p27 binds better to cyclin.CDK complexes than to monomeric CDKs. In growing cells, the majority of p27 was associated with cyclin D1 and the level of p27 was significantly lower than the level of cyclin D1. In cells arrested in G1 with lovastatin, cyclin D1 was degraded and p27 was redistributed to cyclin A.Cdk2. In contrast to p21 (which is a p27-related CDK inhibitor and is induced by UV irradiation), the level of p27 was reduced after UV irradiation, but because cyclin D1 was degraded more rapidly than p27, there was a transient increase in binding of p27 to cyclin A.Cdk2. These data suggest that cyclin D1.Cdk4 acts as a reservoir for p27, and p27 is redistributed from cyclin D1.Cdk4 to cyclin A.Cdk2 complexes during S phase, or when cells are arrested by growth factor deprivation, lovastatin treatment, or UV irradiation. It is likely that a similar principle of redistribution of p27 is used by the cell in other instances of cell cycle arrest.  相似文献   

14.
Trichostatin A (TSA), a global repressor of histone deacetylase activity, inhibits the proliferation of a number of cell types. However, the identification of the mechanisms underlying TSA-mediated growth arrests has remained elusive. In order to resolve in more detail the cellular process modulated during the growth inhibition induced by TSA, we studied the effect of the drug on G(0)/G(1) traverse in mitogen-stimulated quiescent Balb/c-3T3 cells. Cyclin D1 and retinoblastoma proteins were induced following the mitogenic stimulation of both control and TSA-treated cells, and cyclin D1 formed complexes with CDK4 under both conditions. However, cyclin D1-associated kinase was not increased in growth-arrested cells. The lack of cyclin D-associated kinase was paralleled by an accumulation of RB in a hypophosphorylated form, as would be expected. In contrast, p130 became partially phosphorylated, accompanied by a marked increase in p130-dependent E2F DNA binding activity and a partial release of free E2F-4. Despite the presence of E2F complexes not bound to pocket proteins, late G(1) E2F-dependent gene expression was not observed. The lack of cyclin D1-associated kinase in TSA-treated cultures was potentially due to high levels of the cyclin-dependent inhibitor p27(kip1). However, the modulation of p27(kip1) levels by the deacetylase inhibitor cannot be responsible for the induction of the cell cycle arrest, since the growth of murine embryo fibroblasts deficient in both p27(kip1) and p21(cip1) was also inhibited by TSA. These data support a model in which TSA inhibits very early cell cycle traverse, which, in turn, leads to a decrease in cyclin D1-associated kinase activation and a repression of late cell cycle-dependent events. Alterations in early G(0)/G(1) gene expression accompany the TSA-mediated growth arrest.  相似文献   

15.
The use of a temperature switch to control the growth and productivity of temperature-sensitive (ts) mutants was investigated to extend the productive life span of recombinant Chinese hamster ovary (CHO) cells in batch culture. Bromodeoxyuridine was used at 39 degrees C to select mutagenized CHO-K1 cells, which resulted in the isolation of 31 temperature-sensitive mutants that were growth inhibited at 39 degrees C. Two of these mutants were successfully transfected with the gene for tissue inhibitor of metalloproteinases (TIMP) using glutamine synthetase amplification, and a permanent recombinant cell line established (5G1-B1) that maintains the ts phenotype.Continuous exposure to the nonpermissive temperature (npt) of 39 degrees C led to a rapid decline in cell viability. However, a temperature regime using alternating incubations at 34 degrees C and 39 degrees C arrested the 5G1-B1 cells while retaining a high cell viability for up to 170 h in culture. The specific production rate of the growth-arrested cells was 3-4 times that of control cultures maintained at a constant 34 degrees C over the crucial 72-130-h period of culture, which resulted in a 35% increase in the maximum product yield. Glucose uptake and lactate production both decreased in arrested cells. Flow cytometric analysis indicated that 5G1-B1 cells arrested in the G(1) or G(0) phase of the cell cycle, and no major structural damage was caused to these cells by the alternating temperature regime.These results demonstrate that growth-arrested ts CHO cells have increased productivity compared to growing cultures and maintain viability for longer periods. The system offers the prospect of enhancing the productivity of recombinant mammalian cells grown in simple batch fermentors. (c) 1993 John Wiley & Sons, Inc.  相似文献   

16.
The extracellular matrix is a crucial component in determining cell fate. Fibrillar collagen in its native form inhibits cell proliferation, whereas in its monomeric form it stimulates proliferation. The observation of elevated levels of p27(KIP1) in cells plated in the presence of fibrillar collagen has led to the assumption that this kinase inhibitor was responsible for cell cycle arrest on fibrillar collagen. Here we provide evidence that p15(INK4b), rather than p27(KIP1), is the cyclin-dependent kinase inhibitor responsible for G0/G1 arrest of human melanoma cells grown on fibrillar collagen. Additionally, we demonstrate that fibrillar collagen can also arrest cells at the G2 phase, which is mediated in part by p21(CIP1). Our data, in addition to identifying cyclin-dependent kinase inhibitors important in cell cycle arrest mediated by fibrillar collagen, demonstrate the complexity of cell cycle regulation and indicate that modulating a single cyclin-dependent kinase inhibitor does not disrupt cell proliferation in the presence of fibrillar collagen.  相似文献   

17.
We have engineered dihydrofolate reductase-deficient (dhfr(-)) Chinese hamster ovary (CHO)-DUKX B11 cells adapted for growth in serum-free suspension cultures for unlinked muristerone-inducible expression of the cyclin-dependent kinase inhibitor p27Kip1 and constitutive expression of the soluble intercellular adhesion molecule-1 (sICAM), a potent common cold therapeutic. Conditional overexpression of p27Kip1 resulted in a sustained G1-specific growth arrest of transgenic CHO-DUKX associated with up to fivefold-increased specific sICAM productivity. Herein we exemplify the implementation of controlled proliferation technology in a major biopharmaceutical production cell line that is compatible with key requirements for large-scale production procedures, including constitutive transgene expression and anchorage-independent growth in serum-free media.  相似文献   

18.
The cyclin-dependent kinase inhibitors (CKIs) bind to and directly regulate the catalytic activity of cyclin-dependent kinase (Cdk)/cyclin complexes involved in cell cycle control and do not regulate other, closely related Cdks. We showed previously that the CKI, p27, binds to Cdk2/cyclin A though a sequential mechanism that involves folding-on-binding. The first step in the kinetic mechanism is interaction of a small, highly dynamic domain of p27 (domain 1) with the cyclin subunit of the Cdk2/cyclin A complex, followed by much slower binding of a more lengthy and less flexible domain (domain 2) to Cdk2. The second step requires folding of domain 2 into the kinase inhibitory conformation. Rapid binding of p27 domain 1 to cyclin A tethers the inhibitor to the binary Cdk2/cyclin A complex, which reduces the entropic barrier associated with slow binding of domain 2 to the catalytic subunit. We show here that p27/cyclin interactions are an important determinant of p27 specificity towards cell cycle Cdks. We used surface plasmon resonance, limited proteolysis, mass spectrometry, and NMR spectroscopy to study the interaction of p27 with Cdk2/cyclin A, and with another Cdk complex, Cdk5/p25, that is involved in neurodegeneration. Importantly, Cdk5/p35 (the parent complex of Cdk5/p25) is not regulated by p27 in neurons. Our results show that p27 binds to Cdk5 and Cdk2 with similar, slow kinetics. However, p27 fails to interact with p25 within the Cdk5/p25 complex, which we believe prevents formation of a kinetically trapped, inhibited p27/Cdk5/p25 complex in vivo. The helical topology of p25 is very similar to that of cyclin A. However, p25 lacks the MRAIL sequence in one helix that, in the cell cycle cyclins, mediates specific interactions with domain 1 of p21 and p27. Our results strongly suggest that p21 and p27, related Cdk inhibitors, select their cell cycle regulatory Cdk targets by binding specifically to the cyclin subunit of these Cdk/cyclin complexes as a first step in a sequential, folding-on-binding mechanism.  相似文献   

19.
20.
We have used quinazoline inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase to study the link between EGFR signaling and G(1) to S traverse. Treatment of A431 and MDA-468 human tumor cells with 0.1-10 microM AG-1478 inhibited basal and ligand-stimulated EGFR phosphorylation without a decrease in receptor content, EGF-binding sites, or binding affinity. Incubation of A431 cells with 0.1-1 microM AG-1517 abrogated (125)I-EGF internalization. Both AG-1478 and AG-1517 markedly inhibited A431 and MDA-468 colony formation in soft agarose at concentrations between 0.01 and 1 microM. Daily injections of AG-1478 at 50 mg/kg delayed A431 tumor formation in athymic nude mice. A transient exposure of A431 cells to AG-1478 resulted in a dose-dependent up-regulation of the cyclin-dependent kinase inhibitor p27, down-regulation of cyclin D1 and of active MAPK, and hypophosphorylation of the retinoblastoma protein (Rb). These changes were temporally associated with recruitment of tumor cells in G(1) phase and a marked reduction of the proportion of cells in S phase. Upon removal of the kinase inhibitor, EGFR and Rb phosphorylation and the levels of cyclin D1 protein were quickly restored, but the cells did not reenter S phase until p27 protein levels were decreased. Phosphorothioate p27 oligonucleotides decreased p27 protein in A431 cells and abrogated the quinazoline-mediated G(1) arrest. Treatment of A431 cells with PD 098509, a synthetic inhibitor of MEK1, inhibited MAPK activity without inducing G(1) arrest or increasing the levels of p27. However, treatment with LY 294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), inhibited basal Akt activity, up-regulated p27, and recruited cells in G(1). These data suggest that p27 is required for the growth arrest that follows interruption of the EGFR kinase in receptor-overexpressing cells. In addition, the G(1) arrest and up-regulation of p27 resulting from EGFR blockade are not due to the interruption of MAPK, but to the interruption of constitutively active PI3K function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号