首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
From the cytosol fraction (supernatant fluid at 105,000 g) of chicken liver, 4-en-3-oxosteroid 5β-reductase (EC 1.3.1.23) was purified by ammonium sulfate precipitation, followed by Butyl Toyopearl, DEAE-Sepharose, Sephadex G-75 and hydroxylapatite column chromatographies. The enzyme activity was quantitated from amount of the 5β-reduced metabolites derived from [4-14C]testosterone. During the purification procedures, 17β-hydroxysteroid dehydrogenase which was present in the cytosol fraction was separated from 5β-reductase fraction by the Butyl Toyopearl column chromatography. By the DEAE-Sepharose column chromatography, 3α- and 3β-hydroxysteroid dehydrogenases were able to be removed from 5β-reductase fraction. The final enzyme preparation was apparently homogenous on SDS-polyacrylamide gel electrophoresis. Purification was about 13,600-fold from the hepatic cytosol. The molecular weight of this enzyme was estimated as 37,000 Da by SDS-polyacrylamide gel electrophoresis and also by Sephadex G-75 gel filtration. For 5β-reduction of 4-en-3-oxosteroids, such as testosterone, androstenedione and progesterone, NADPH was specifically required as cofactor. Km of 5β-reductase for NADPH was estimated as 4.22 × 10−6M and for testosterone, 4.60 × 10−6M. The optimum pH of this enzyme ranged from pH 5.0 to 6.5 and other enzymic properties of the 5β-reductase were examined.  相似文献   

2.
From the cytosol fraction (supernatant fluid at 105,000 g) of chicken liver, 3 alpha-hydroxysteroid dehydrogenase was purified to an apparently homogeneous state by differential precipitation with ammonium sulfate, followed by column chromatographies with DE 51, DEAE-Toyopearl, and Sephadex G-100. Finally the dehydrogenase was purified 103-fold on the basis of the cytosol fraction. Polyacrylamide gel electrophoretic analysis in the presence of sodium dodecyl sulfate (SDS) revealed that molecular weight of the purified enzyme was 66 kDa, while that of the native dehydrogenase in the absence of SDS was estimated as 660 kDa or more from the peak of the enzyme in elution profile from Sephacryl S-200 column chromatography. The dehydrogenase required NADPH specifically for reduction of 3-oxo group of 5 beta-androstanedione (Km = 1.6 microM). Optimal temperature for 3-oxo reduction was 50 C in incubation for 10 min.  相似文献   

3.
In the hepatic cytosol fraction of bullfrog, Rana catesbeiana, an alkaline RNase [EC 3.1.4.22] exists in two forms. One is the free form of RNase, which elutes from a carboxymethyl-cellulose column at a concentration of 0.2 M NaC1. The other is a masked or latent form (RNase-RNase inhibitor complex) which is not adsorbed on the carboxymethyl-cellulose column and which can be converted to the free form of RNase by the addition of p-chloromercuribenzoate. Electrophoretically pure RNase was obtained by the following procedure. The unadsorbed fraction of hepatic cytosol on a column of carboxymethyl-cellulose was treated with p-chloromercuribenzoate and then applied to a second carboxymethyl-cellulose column. The molar weight of RNase was determined to be approximately 12,000 by gel filtration and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. From the results of gel filtration, the molecular weight of the RNase-RNase inhibitor complex was 130,000. The RNase hydrolyzed poly C, poly U, and poly I, but not poly A or poly G. When poly C was used as a substrate, 2',3'-cyclic CMP as an intermediate and 3'-CMP as a final product were identified. The results of amino acid analysis indicated the presence of an unusual component. The general properties of the RNase and the RNase-RNase inhibitor complex are also reported.  相似文献   

4.
5.
Glutamine synthetase from the plant cytosol fraction of lupin nodules was purified 89-fold to apparent homogeneity. The enzyme molecule is composed of eight subunits of Mr 44,700 ± 10%. Kinetic analysis indicates that the reaction mechanism is sequential and there is some evidence that Mg-ATP is the first substrate to bind to the enzyme. Michaelis constants for each substrate using the ammonium-dependent biosynthetic reaction are as follows: ATP, 0.24 mm; l-glutamate, 4.0–4.2 mm; ammonium, 0.16 mm. Using an hydroxamate-forming biosynthetic reaction the Km ATP is 1.1 mm but the Km for l-glutamate is not altered. The effect of pH on the Km for ammonium indicates that NH3 rather than NH4+ may be the true substrate. At 10 mm Mg2+, the pH optimum of the enzyme is between 7.5 and 8, but increasing Mg2+ concentrations produce progressively more acidic optima while lower Mg2+ concentrations raise the pH optimum. The rate-response curve for Mg2+ is sigmoidal becoming bell-shaped in alkaline conditions. The enzyme is inhibited by l-Asp (Ki, 1.4 mm) and less markedly by l-Gln and l-Asn. Inhibition by ADP and AMP is strong, both nucleotides exhibiting Ki values around 0.3 mM. Investigations of the probable physiological conditions within the nodule plant cytosol indicate that in situ glutamine synthetase has an activity greater than that required to support the efflux of amino acid nitrogen from the nodule. A possible role for glutamine synthetase in the control of nodule ammonium assimilation is suggested.  相似文献   

6.
delta 4-3-Ketosteroid 5 beta-reductase was purified about 230-fold from 100,000 X g supernatant of rat liver homogenate using 7 alpha-hydroxy-4-cholesten-3-one as substrate throughout. The purified enzyme was electrophoretically homogeneous, and its molecular weight determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 37,000 and that determined by gel filtration chromatography on calibrated Sephadex G-100 column was 37,200. The absorption spectrum of the purified enzyme showed only a peak at 276 nm due to aromatic amino acids, precluding the presence of a prosthetic group such as flavine in the molecule. The enzyme is highly labile in a low buffer concentration, but is markedly stabilized in the presence of 20% glycerol in 10 mM phosphate buffer. Higher buffer concentration such as 300 mM potassium phosphate buffer was also effective to prevent deterioration in the absence of glycerol, but the effect was somewhat lower compared to glycerol. The purified enzyme showed the activity toward a variety of substrates including testosterone, cortisol, cortisone, progesterone, 4-androstene-3,17-dione, 7 alpha-hydroxy-4-cholesten-3-one, and 7 alpha,12 alpha-dihydroxy-4-cholesten-3-one. The optimal pH for the 5 beta-reduction of 7 alpha-hydroxy-4-cholesten-3-one was 7.4, and the cofactor required for the reaction was NADPH, while NADH revealed no effect. The enzyme activity was inhibited by p-chloromercuribenzoate, but its inhibition was prevented by the presence of a reduced form of glutathione.  相似文献   

7.
8.
We investigated the localization of cytosol 5'-nucleotidase in chicken liver by use of a pre-embedding immunoenzyme technique. Cytosol 5'-nucleotidase was purified from chicken liver and a monospecific antibody to this enzyme was raised in a rabbit. Fab fragments of the antibody were conjugated with horseradish peroxidase. Tissue sections of the fixed chicken liver were incubated with the peroxidase-Fab fragments, followed by DAB reaction for peroxidase. By light microscopy, dark-brown staining was present in the cytoplasm of parenchymal cells, Kupffer cells, and endothelial cells. The latter two types of cells were stained more strongly than the former. By electron microscopy, reaction deposits were present in the cytoplasmic matrix but not in cell organelles, such as mitochondria, endoplasmic reticulum, and peroxisomes, or in nuclei. In control sections incubated with peroxidase-conjugated Fab fragments from non-immunized rabbit, no specific reaction was noted. The results indicate that cytosol 5'-nucleotidase is contained more in the sinus-lining cells and less in the parenchymal cells, and that the enzyme is present in the cytoplasmic matrix of these cells.  相似文献   

9.
We have attempted to purify endogenous substrate proteins for casein kinases I and II from the cytosol of AH-66 hepatoma cells. Utilizing the fact that only a few substrates are concentrated in the fraction eluted from DEAE-cellulose between 0.3 and 0.6 M NaCl, two substrates were purified from this fraction by DEAE-cellulose chromatography, hydroxyapatite chromatography, and HPLC on a DEAE-5PW column. The purified substrate proteins had molecular masses of 30.5 kDa and 31 kDa. The 31-kDa protein substrate was markedly phosphorylated by casein kinase II, but only slightly by casein kinase I. The radioactive phosphate incorporated into 31-kDa substrate by casein kinase II was 0.2 mol/mol of the protein and phosphorylation occurred on both threonine and serine residues. The 30.5 kDa protein was only slightly phosphorylated by casein kinase II, but not at all by casein kinase I.  相似文献   

10.
We have attempted to purify endogenous substrate proteins for casein kinases I and II from the cytosol of AH-66 hepatoma cells. Utilizing the fact that only a few substrates are concentrated in the fraction eluted from DEAE-cellulose between 0.3 and 0.6 M NaCl, two substrates were purified from this fraction by DEAE-cellulose chromatography, hydroxyapatite chromatography, and HPLC on a DEAE-5PW column. The purified substrate proteins had molecular masses of 30.5 kDa and 31 kDa. The 31-kDa protein substrate was markedly phosphorylated by casein kinase II, but only slightly by casein kinase I. The radioactive phosphate incorporated into 31-kDa substrate by casein kinase II was 0.2 mol/mol of the protein and phosphorylation occurred on both threonine and serine residues. The 30.5 kDa protein was only slightly phosphorylated by casein kinase II, but not at all by casein kinase I.  相似文献   

11.
Cortisone 5 beta-reductase (4,5 beta-dihydrocortisone:NADP+ delta 4-oxidoreductase, EC 1.3.1.3) was purified from rat liver 100,000 X g supernate to a homogeneous state based on the catalytic activity. In the course of purification the activity was always accompanied by androstenedione 5 beta-reductase (3-oxo-5 beta-steroid:NADP+ delta 4-oxidoreductase, EC 1.3.1.23) and no fraction which revealed only cortisone 5 beta-reductase activity but lacked androstenedione 5 beta-reductase was observed. Partial denaturation of the purified enzyme with p-chloromercuribenzoate or wtih heat reduced both enzyme activities to a similar extent. When both substrates were added together at concentrations sufficient to saturate or nearly saturate the enzyme when added separately, the total rate of the reactions was much less than the sum of the rates of the reactions measured separately. Judging from these results it was concluded that cortisone 5 beta-reduction and that of androstenedione are catalyzed by the same catalytic site of a single protein.  相似文献   

12.
Cytosolic protein-O-carboxylmethyltransferase was purified more than 4,000-fold in specific activity and membrane-associated protein-O-carboxylmethyltransferase carboxymethylase about 900-fold from chicken erythrocytes by use of a combination of affinity chromatography on immobilized S-adenosyl-L-homocysteine and gel filtration on Sephacryl S-200 (Pharmacia), together with 3-((3-cholamidopropyl)-dimethylammonio)-1-propane-sulfonate as a detergent to solubilize the membrane-associated enzyme. The two enzymes were characterized by examining the dependence of their activity on pH and on concentration of S-adenosyl-L-methionine using fetuin as an exogenous methyl-acceptor substrate, and were found to differ somewhat. The cytosolic enzyme had a pH optimum of 6.0 with an apparent Km value of 2.1 microM for S-adenosyl-L-methionine, whereas corresponding values for the membrane-associated enzyme were 6.5 and 0.71 microM. This report deals with the biochemical differences between purified cytosolic and membrane-associated protein carboxymethylase from the same cell source.  相似文献   

13.
14.
For the first time an interaction between aspartate transaminase (EC 2.6.1.1.) from chicken heart cytosol and the substrates and their analogues has been investigated by means of circular dichroism and absorption spectra (at pH 5,0-8,0 range). The asymmetry factor of the native enzyme and the enzymes--substrate intermediates was found. The results obtained were explained in terms of changes of the enzyme's active site conformation.  相似文献   

15.
The NADPH:5 alpha-dihydroprogesterone 3 alpha-hydroxysteroid oxidoreductase (3 alpha-HSOR) [EC 1.1.1.50] which catalyzes the reversible conversion of 5 alpha-pregnane-3,20-dione (5 alpha-dihydroprogesterone; 5 alpha-DHP) to 3 alpha-hydroxy-5 alpha-pregnan- 20-one (3 alpha-,5 alpha-tetrahydroprogesterone; 3 alpha,5 alpha-THP) was purified to apparent homogeneity from female rat anterior pituitary cytosol by a three step micro-purification procedure. Specific activity of purified 3 alpha-HSOR was enriched 438-fold from that in pituitary cytosol using successive ion exchange, chromatofocusing and affinity column chromatography purification steps. 3 alpha-HSOR appears to be a monomer with an approximate molecular weight of 36 kDa and an isoelectric point of about 5.75. The purified enzyme appears as a single protein staining band (36 kDa) when examined by polyacrylamide gel electrophoresis and with both silver or Coomassie blue staining. Under non-dissociating electrophoretic conditions, all of the 3 alpha-HSOR activity co-migrated with the 36 kDa protein staining band. The purified enzyme in the presence of the preferred cofactor, NADPH, has an apparent Km for 5 alpha-DHP of 82 nM and a Vmax of 1.2 mumol of 3 alpha,5 alpha-THP formed per mg protein/30 min. The Km for NADPH was 0.71 microM. In the oxidative direction, the enzyme in the presence of NADP+ has a Km for 3 alpha,5 alpha-THP of 1.4 microM and a Vmax of 9.7 mumol of 5 alpha-DHP formed per mg protein/30 min. The Km for NADP+ was 1.6 microM.  相似文献   

16.
17.
Fluoraocetate-specific defluorinase, an enzyme which catalyzes the release of fluoride ion from the rodenticide fluoroacetate, has been purified 347-fold from mouse liver cytosol and shown to be distinct from multiple cationic and anionic glutathione S-transferase isozymes. Fluoroacetate-specific defluorinase was obtained at a final specific activity of 659 nmol of F-/min/mg of protein and was prepared in an overall yield of 12%. The isoelectric point of this hepatic enzyme was acidic, at pH 6.4, as determined by column chromatofocusing. The molecular weight of the active species was estimated at 41,000, and sodium dodecyl sulfate-polyacrylamide gels of the purified defluorinase demonstrated a predominant subunit, Mr = 27,000. Chromatofocusing completely partitioned the fluoroacetate-specific defluorinase from two separate peaks of murine anionic glutathione S-transferase activity. Rabbit antibodies prepared against the purified hepatic defluorinase quantitatively precipitated native defluorinase from mouse and rat liver, but were unable to immunoprecipitate cationic or anionic glutathione S-transferase enzymes from the same preparation. The evidence presented suggests that fluoroacetate-specific defluorinase and glutathione S-transferase activities are catalyzed by separate proteins present in the cytosol of mouse liver.  相似文献   

18.
Homogeneous aspartate aminotransferase (purity--99%, yield--70%) has been prepared from chicken heart cytosol. The purification procedure included fractionation with ammonium sulfate and ethanol and crystallization. Crystals (0.3 x 0.5 x 2 mm) of the free enzyme were prepared from ammonium sulfate solution and studied by X-ray analysis at 2.5 A resolution.  相似文献   

19.
Purification of oxysterol binding protein from hamster liver cytosol   总被引:7,自引:0,他引:7  
We have purified to apparent homogeneity an oxysterol binding protein from cytosol of hamster livers. This protein, which corresponds to the protein described by Taylor and Kandutsch (Taylor, F. R., and Kandutsch, A. (1985) Chem. Phys. Lipids 38, 187-194), binds oxysterols such as 25-hydroxycholesterol but does not bind cholesterol or steroid hormones in vitro. It may participate in the feedback repression of enzymes of cholesterol biosynthesis and the low density lipoprotein receptor. The protein was purified more than 40,000-fold with a series of ion exchange chromatography steps. The final preparation contained a doublet of peptides with molecular weights (Mr) of 101,000 and 96,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These components formed a complex that migrated on gel filtration with an apparent Mr of 280,000 in the absence or presence of 25-hydroxycholesterol. The amino acid sequence of a tryptic peptide from this protein complex was obtained, and a monoclonal antipeptide antibody was prepared. The antibody stained both the 101,000- and 96,000-Da proteins on immunoblots, suggesting that these two components are closely related and that one may be a modified or proteolyzed form of the other. With the purified protein now available, it should become possible to determine the role, if any, that this protein plays in the regulation of intracellular cholesterol metabolism.  相似文献   

20.
Aspartate transaminase from chicken heart cytosol was immobilized covalently on activated thiol-Sepharose and digested with trypsin. After washing, the thiol-containing peptides were eluted with 2-mercaptoethanol and further purified by gel-filtration and paper chromatography. Three pure cysteinyl peptides were isolated. One of them may be represented as Ile-(Asp, Met, Cys, Gly, Leu, Thr2)-Lys; this peptide is identical to the fragment comprizing residues 387--395 in the peptide chain of aspartate transaminase from pig heart cytosol. It thus contains a cysteine residue homologous to Cys-390 of the pig heart enzyme. The second cysteinyl peptide had the following composition and partial sequence: Tyr-Phe-Val-Ser-Glu-Gly-Phe-Glu-Leu-Phe (Cys, Ala, Glu, Ser2, Phe)Lys, which corresponds to the sequence 242--258 of the pig enzyme and thus contains a cysteine residue homologous to Cys-252. The third cysteinyl peptide was similar to the tryptic peptide of the pig enzyme containing Cys-191.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号