首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[3H]Dihydroalprenolol, a potent beta-adrenergic antagonist, was used to identify the adenylate cyclase-coupled beta-adrenoceptors in isolated membranes of rat skeletal muscle. The receptor sites, as revealed by [3H]dihydroalprenolol binding, were predominantly localized in plasmalemmal fraction. That skeletal muscle fraction may also contain the plasmalemma of other intramuscular cells, especially that of blood vessels. Hence, the [3H]dihydroalprenolol binding observed in that fraction may be due partly to its binding to the plasmalemma of blood vessels. Small but consistent binding was also observed in sarcoplasmic reticulum and mitochondria. The level of [3H]dihydroalprenolol binding in different subcellular fractions closely correlated with the level of adenylate cyclase present in those fractions. The binding of [3H]dihydroalprenolol to plasmalemma exhibited saturation kinetics. The binding was rapid, reaching equilibrium within 5 min, and it was readily dissociable. From the kinetics of binding, association (K1) and dissociation (K2) rate constants of 2.21 . 10(7) M-1 . min-1 and 3.21 . 10(-1) min-1, respectively, were obtained. The dissociation constant (Kd) of 15 mM for [3H]dihydroalprenolol obtained from saturation binding data closely agreed with the Kd derived from the ratio of dissociation and association rate constants (K2/K1). Several beta-adrenergic agents known to be active on intact skeletal muscle also competed for [3H]dihydroalprenolol binding sites in isolated plasmalemma with essentially similar selectivity and stereospecificity. Catecholamines competed for [3H]dihydroalprenolol binding sites with a potency of isoproterenol greater than epinephrine greater than norepinephrine. A similar order of potency was noted for catecholamines in the activation of adenylate cyclase. Effects of catecholamines were stereospecific, (-)-isomers being more potent than (+)-isomers. Phenylephrine, an alpha-adrenergic agonist, showed no effect either on [3H]dihydroalprenolol binding or on adenylate cyclase. Known beta-adrenergic antagonists, propranolol and alprenolol, stereospecifically inhibited the [3H]dihydroalprenolol binding and the isoproterenol-stimulated adenylate cyclase. The Ki values for the antagonists determined from inhibition of [3H]dihydroalprenolol binding agreed closely with the Ki values obtained from the inhibition of adenylate cyclase. The data suggest that the binding of [3H]dihydroalprenolol in skeletal muscle membranes possess the characteristics of a substance binding to the beta-adrenergic receptor.  相似文献   

2.
This report describes the uptake of L-[propyl-2,3-3H]dihydroalprenolol, a beta-adrenergic antagonist, by HeLa (human adenocarcinoma) cells. [3H]Dihydroalprenolol binds to sites of high capacity and low affinity in intact HeLa cells. The binding achieves equilibrium rapidly and is rapidly reversible. Bound [3H]dihydroalprenolol is displaceable by beta-adrenergic antagonists in a nonstereoselective fashion, but is not displaceable by isoproterenol, an adrenergic agonist. Phentolamine, an alpha-adrenergic antagonist, and chloroquine, a lysosomotropic amine, also compete for [3H]dihydroalprenolol binding sites. [3H]Dihydroalprenolol binding is inhibited by metabolic inhibitors, but not by cytoskeletal blocking agents. The binding is sensitive to extracellular pH (less binding at lower pH) and is temperature-sensitive (less binding at lower temperatures). The bound radioligand is rapidly reversed following hypotonic lysis of the cells. These [3H]dihydroalprenolol binding sites in intact HeLa cells therefore do not have the characteristics expected for beta-adrenergic receptors. Further studies showed that beta-adrenergic receptors could be detected in a HeLa membrane preparation using [125I]iodohydroxybenzylpindolol, and that chloroquine had very low affinity for these receptors. We conclude that [3H]dihydroalprenolol diffuses across the plasma membrane of intact HeLa cells and accumulates in acidic intracellular compartments.  相似文献   

3.
Binding of [3H]dihydroergokryptine and [3H]dihydroalprenolol to membrane preparations from rat submaxillary gland was measured to characterize the alpha- and beta-adrenergic receptors, respectively. Kinetic analysis of the data revealed a high affinity binding site for each radioligand. Inhibition of binding at each site was stereospecific for the active isomer of the catecholamine used. The greater ability of a beta1 than beta2 specific beta-adrenergic antagonist to displace [3H]dihydroalprenolol binding indicated that this binding site was of the beta1 type. Chemical sympathectomy with reserpine or 6-hydroxydopamine resulted in a significant increase in both [3H]dihydroalprenolol and [3H]dihydroergokryptine binding in the rat submaxillary gland. 3scatchard analysis of the data indicated that these increases in binding were due to a change in total number of binding sites for [3H]dihydroergokryptine and [3H]dihydroalprenolol with little change in apparent affinities. This suggests that changes in alpha- and beta-adrenergic receptor density may be important in the development of supersensitivity in salivary glands after reserpine and 6-hydroxydopamine treatment.  相似文献   

4.
C Senault  V Le Comte  R Portet 《Biochimie》1984,66(7-8):573-578
In relation to decreased metabolic sensitivity to catecholamines observed, in vitro, in brown fat of cold-acclimated rats, beta-adrenergic receptors were studied in isolated cells and in a crude membrane preparation from rat interscapular brown adipose tissue. [3H] dihydroalprenolol binding had the same characteristics in both types of preparation; competition studies of [3H] dihydroalprenolol binding led to the characterization of beta 1 subtype adrenergic receptors with a lower affinity of beta-adrenergic agonists for [3H] dihydroalprenolol binding sites in membranes than that found in isolated cells. Cold acclimation produced, in isolated cells only, a decrease of 41% in the [3H] dihydroalprenolol binding sites and a beta-adrenergic agonist affinity increase. It is concluded that beta-adrenergic receptor decrease could be a factor, at the hormone receptor interaction level, in the regulation of the transmission of biological action responsible for the cold-induced decrease in catecholamine responsiveness in brown adipose tissue. For a study of the desensitization process in brown fat, isolated cells seem to offer certain advantages over a crude membrane preparation.  相似文献   

5.
The beta-adrenergic receptors of isolated human fat cells were identified using a new hydrophilic beta-adrenergic radioligand (+/-)[3H]CGP-12177. The results were compared with those from [3H]dihydroalprenolol binding to fat cells and membranes. [3H]CGP-12177 binding to isolated fat cells showed lower nonspecific binding (less than 15% of total binding) than the lipophilic [3H]dihydroalprenolol (40-60%) at 3 times the KD. At 37 degrees C, [3H]CGP-12177 binding was rapid, reversible, of high affinity (1.2 +/- 0.3 nM) and saturable. The total number of binding sites per cell in subcutaneous adipocytes was 25,000 +/- 6,000 and was equivalent to that found using membrane fractions. Displacement of [3H]CGP-12177 bound to adipocytes by propranolol was stereoselective, consistent with competition at a single site, and had the same characteristics as in membranes. The displacement curves of the beta 1-selective antagonists (atenolol and betaxolol) were biphasic, the high affinity displacement accounting for 70% of the total binding sites. Beta-adrenergic agonists also competed with [3H]CGP-12177 binding in the order of potency: (-) isoproterenol greater than (-) norepinephrine greater than (-) epinephrine, similar to that found in membranes and in in vitro studies on the lipolytic activity of isolated fat cells. This study demonstrates that the sites specifically labeled by [3H]CGP-12177 are the physiological beta-adrenoceptors and also shows that the ligand is better than [3H]dihydroalprenolol for the accurate identification of these receptors in intact human adipocytes. The methodology, which requires biopsies of less than 1 gram of adipose tissue, can be of potential interest for clinical studies investigating the status of fat cell beta-adrenoceptors in various pathophysiological situations.  相似文献   

6.
Using a competitive binding assay the effects of 2-hydroxyestradiol-17 beta, 4-hydroxyestradiol-17 beta, estradiol-17 beta and progesterone on the binding of tritiated catecholaminergic ligands to membrane preparations from rat brain and pituitary gland were studied. Up to a concentration of 10(-5) M none of the steroids tested was able to displace [3H]spiroperidol, [3H]dihydroergocryptine or [3H]dihydroalprenolol. The data suggest that the catecholestrogens do not interfere directly with the binding of catecholaminergic ligands to dopaminergic, alpha-adrenergic or beta-adrenergic receptors in the central nervous system. The view that a catechol structure is not essential for the interaction with dopaminergic receptors was further supported by the results obtained from additional studies on the competition of O-methylated and deaminated dopamine metabolites with [3H]spiroperidol binding.  相似文献   

7.
The specific beta-adrenergic agonist radioligand (+/-)-[3H]hydroxybenzylisoproterenol ([3H]HBI) was used to investigate alterations in the beta-adrenergic receptors of frog erythrocytes occurring during the process of agonist-induced, receptor-specific desensitization. There was close agreement between the percentage fall in [3H]HBI binding and that in catecholamine-stimulated adenylate cyclase activity following periods of preincubation of up to 7 h with 0.1 mM (-)-isoproterenol. Desensitization was maximal by 5 h, resulting in a 69% reduction in [3H]HBI binding and a 67% reduction in isoproterenol-stimulated adenylate cyclase activity. In contrast, binding of the beta-adrenergic antagonist (-)-[3H]dihydroalprenolol was significantly less affected by desensitization (p is less than 0.05 at 2 1/2, 5, and 7 h), showing a maximum reduction in binding of only 35% in these experiments. The consistent close agreement of reduction in agonist binding with that in hormone-stimulated adenylate cyclase activity, together with the significant difference observed between agonist and antagonist binding, implies that an alteration occurs during desensitization which preferentially interferes with agonist binding, while antagonist binding is less affected. The locus of this agonist-specific alteration may be the receptor binding site or a site involved in receptor-enzyme coupling. Agonist binding studies may now be used to assess more completely the desensitized state of beta-adrenergic receptors in systems in which marked desensitization of beta-adrenergic responses is associated with little or no reduction in antagonist binding.  相似文献   

8.
Treatment of frog erythrocytes with N,N' dicyclohexylcarbodiimide (DCCD) leads to a loss of catecholamine stimulated adenylate cyclase activity without any decrease in fluoride or PGE1 stimulated cyclase. However, the concentrations of the reagent which inhibit catecholamine sensitive adenylate cyclase activity are 10 fold lower than those which inhibit specific [3H]dihydroalprenolol ([3H]DHA) beta-adrenergic receptor binding. By contrast binding of the readiolabeled beta-adrenergic agonist [3H]hydroxybenzylisoproterenol ([3H]HBI) is considerably more sensitive than antagonist binding to the effects of DCCD. The data suggest that low concentrations of the reagent may modify the effector portion of the beta-adrenergic receptor leading to functional uncoupling of the beta-receptor adenylate cyclase system. At higher concentrations of the reagent the ligand bidning site of the beta-receptor appears also to be altered.  相似文献   

9.
1. The effect of 10 days treatment with growth hormone (GH) (1 mg/kg body wt/day) and somatostatin (SRIF) (0.25 mg/kg body wt/day) subcutaneously on the activity of beta-adrenoceptors in rat hypothalamic, pituitary and cerebral cortical membrane fractions was studied using [3H]dihydroalprenolol ([3H]DHA) as radioligand. 2. The administration of GH significantly increased the beta-adrenoceptor binding affinity and the administration of SRIF decreased the beta-adrenoceptor binding capacity in the hypothalamus. 3. In the pituitary the beta-adrenoceptor binding affinity was significantly decreased after both hormonal applications. 4. In the cerebral cortex the beta-adrenoceptor binding affinity was significantly decreased after the GH treatment and increased after the SRIF treatment. 5. The present study provides direct evidence for GH and SRIF effects on the activity of rat beta-adrenoceptors and supports the view about the involvement of beta-adrenergic mechanisms in the neurotransmitter regulation of GH secretion in the rat.  相似文献   

10.
The postnatal development of [3H]dihydroalprenolol binding to beta-adrenergic receptors has been studied in frontal cortex, cerebellum, striatum, and hypothalamus of the rat after prenatal and perinatal exposure to diazepam. Dams were injected subcutaneously with single daily doses of 1 mg of diazepam/kg from day 7 to 20 of gestation or from day 15 of gestation to day 6 after birth. Prenatal exposure had no effect on litter size or length of gestation or on the postnatal development of body and brain weights of the progeny. However, a reduced mortality of the pups was observed in relation to vehicle-treated controls until postnatal day 10. Prenatal diazepam administration decreased [3H]dihydroalprenolol binding in frontal cortex, striatum, and hypothalamus but not in cerebellum. This decrease in beta-adrenergic receptor binding was due to a decrease in receptor density rather than in receptor affinity. In contrast, perinatal diazepam exposure led to a transient decrease in [3H]dihydroalprenolol binding limited to the frontal cortex. The permanent reduction in number of beta-adrenergic receptors, which depends on the scaling and duration of the drug application period, points to the necessity of a prolonged evaluation of effects of exposure to psychotropic drugs in early stages of brain development.  相似文献   

11.
Thyroid hormone regulation of beta-adrenergic receptor number.   总被引:27,自引:0,他引:27  
The effects of exogenous thyroid hormones (thyroxine and triiodothyronine) on beta-adrenergic receptors in the rat myocardium were investigated. The potent beta-adrenergic antagonist, (-)-[3H]dihydroalprenolol, was used to directly estimate the number and affinity of beta-adrenergic receptors in rat heart membranes from control and hyperthyroid rats. Cardiac membranes from hyperthyroid rats contained 196 +/- 7 fmol of (-)-[3H]dihydroalprenolol binding sites/mg of protein which was significantly (p less than 0.005) greater than the number of binding sites (89 +/- 5 fmol/mg of protein) present in control membranes. The equilibrium dissociation constant (KD) for the interaction of receptors with dihydroalprenolol was the same (2 to 15 nM) in membranes from control and hyperthyroid rats. Similarly, there was no significant difference between the control and hyperthyroid membranes in the affinity of the beta-adrenergic receptor binding sites for the beta-adrenergic agonist isoproterenol. The results of this study demonstrate that thyroid hormones can regulate the number of cardiac beta-adrenergic receptors. The increased numbers of receptors may be responsible, at least in part, for the enhanced catecholamine sensitivity of beta-adrenergic-coupled cardiac responses in the hyperthyroid state.  相似文献   

12.
Tetracaine and other local anesthetics exert multiple actions on the catecholamine-sensitive adenylate cyclase system of frog erythrocyte membranes. Tetracaine (0.2--20 mM) reduces the responsiveness of adenylate cyclase to (a) guanyl-5'-yl-imidodiphosphate and (b) isoproterenol in the presence of GTP or guanyl-5'-yl-imidodiphosphate. Local anesthetics did not affect (a) basal enzyme activity, and (b) enzyme responsiveness to NaF. Tetracaine inhibited stimulation of adenylate cyclase by guanyl-5'-yl-imidodiphosphate over the whole range of nucleotide concentrations. By contrast, inhibition by tetracaine of isoproterenol activity in the presence of GTP was significant only if GTP concentrations exceeded 10(-7) M. Tetracaine also competitively inhibited binding of both the antagonist [3H]dihydroalprenolol and the agonist [3H]hydroxybenzylisoproterenol to beta-adrenergic receptors. However, it was twice as potent in inhibiting [3H]hydroxybenzylisoproterenol as [3H]dihydroalprenolol binding. The greater potency for inhibition of agonist binding was due to the ability of the anesthetics to promote dissociation of the high-affinity nucleotide sensitive state of the beta-adrenergic receptor induced by agonists. Other local anesthetics mimicked the effects of tetracaine on adenylatecyclase and in dissociating high-affinity agonist-receptor complexes. The other of potency for both processes was dibucaine greater than tetracaine greater than bupivacaine greater than lidocaine which agrees with their relative potencies as local anesthetics. By contrast, a different order of potency was observed for competitive inhibition of [3H]dihydroalprenolol binding: dibucaine greater than tetracaine greater than greater than lidocaine greater than bupivacaine.  相似文献   

13.
Isoprenaline treatment of C6-glioma cells induced a fast decrease in the number of beta-adrenergic receptors as determined by binding of [3H]CGP-12177, which paralleled the decrease in the hormonally stimulated adenylate cyclase activity. The total number of receptors, as determined by binding of (-)-[3H]dihydroalprenolol, did not decrease. Separation of the beta-adrenergic receptors on a sucrose density gradient showed that the decrease in the number of receptors detectable with CGP-12177 was due to a movement of the receptors from the plasma membrane to a vesicular cell compartment. By using both (-)-[3H]dihydroalprenolol and [3H]CGP-12177 it is thus possible to differentiate between the total number of receptors and those present at the plasma membrane in an unfractionated cell lysate.  相似文献   

14.
An assay for beta-adrenergic receptors in isolated human fat cells   总被引:3,自引:0,他引:3  
The beta-adrenergic receptors have been characterized in isolated human adipocytes using a potent beta-adrenergic antagonist (-)-[3H]dihydroalprenolol. Binding of (-)-[3H]dihydroalprenolol to isolated fat cells was stereospecific and saturable, the maximum number of binding sites calculated being 7.8 +/- 2.2 pmol of bound ligand/10(7) cells, corresponding to 450,000 binding sites/cell. The dissociation constant was estimated to be 2.7 +/- 1.1 nM. The results with competition-inhibition experiments using beta-adrenergic agonists and antagonists indicated that the binding sites in isolated adipocytes were predominantly of the beta1-subtype; about 80% of the receptors were of this type. With the present method, specific beta-adrenergic receptor number and affinity in isolated human adipocytes could be determined in about 1 g of human adipose tissue.  相似文献   

15.
In rat adipocyte membranes, both beta-adrenergic agonists and beta-adrenergic antagonists competed with (--)[3H]dihydroalprenolol for high affinity (KD 2-4 nM) and low capacity binding sites. The antagonists but not the agonists competed with (--)[3H]dihydroalprenolol for lower affinity and higher capacity sites. The present studies were performed in order to characterize the adipocyte beta-adrenergic receptor and distinguish it from low affinity, higher capacity sites which were heat-labile and not stereoselective. When isoproterenol was used to define the nonspecific binding, saturation studies showed a single binding site with a capacity of approximately 100 fmol/mg membrane protein (corresponding to approximately 50,000 sites/adipocyte). Binding was saturated by 10 nM (--)[3H]dihydroalprenolol. Approximate KD's of 204 nM were observed. Kinetic analysis of (--)[3H]dihydroalprenolol binding provided an independent measurement of KD between 0.75 and 1.1 nM. This binding site had the characteristics of a beta 1-adrenergic receptor with the potency of isoproterenol greater than norepinephrine greater than or equal to epinephrine as competitors of binding. Furthermore, the KD of inhibition of (--)[3H]dihydroalprenolol binding correlated with the Ki of inhibition by antagonists or Ka of activation by agonists of glycerol release in isolated adipocytes (r = 0.968, P less than 0.001). These results suggest that beta-adrenergic agonists compete with (--)[3H]dihydroalprenolol for the high affinity binding site which represents the physiological site. Furthermore, the use of antagonists (propranolol, alprenolol) to define specific beta-binding includes nonspecific site(s) as well as the beta-adrenergic site. Previous characterization and quantitation of beta receptors in rat fat cell membranes may have been in error by incorporating both types of binding in their measurement.  相似文献   

16.
Cooperative site-to-site interactions among beta-adrenergic receptors of fat cell membranes are probed with the potent beta-adrenergic antagonist (?)-[3H]-dihydroalprenolol according to the kinetic method of De Meyts et al. (De Meyts, P., Roth, J., Neville, Jr., D.M., Gavin, III, J.R. and Lesniak, M.A. (1973) Biochem. Biophys. Res. Commun. 55, 154–161). Dissociation of specific (?)-[3H]dihydroalprenolol binding from fat cell membranes following a 100-fold dilution was rapid at 37°C; only 40% of the initial equilibrium binding remained 30 s after dilution. Dissociation of (?)-[3H]dihydroalprenolol bound under conditions yielding approximately 20% initial occupancy was performed in the absence and in the presence of a large molar excess of beta-adrenergic agonist ((?)-isoproterenol) or beta-adrenergic antagonist ((?)-alprenolol or(?)-propanalol). Neither agonists nor antagonists influenced the rate of (?)-[3H]dihydroalprenolol dissociation from fat cell membranes performed at 4, 22 or 37°C. Although analysis of the steady-state binding of (?)-[3H]-dihydroalprenolol to fat cell membranes yields Hill coefficients, nH, less than 1.0, the present study indicates that these fat cell beta-adrenergic receptors display no cooperative site-to-site interactions.  相似文献   

17.
When adipocyte membranes are successively exposed to (-)-propranolol or (+/- alprenolol at 25 or 4 degrees C, repeatedly washed and then assayed for (-)-[3H]dihydroalprenolol binding, the apparent number of beta-adrenergic binding sites is markedly decreased. Induction of this peculiar type of receptor desensitization does not require prolonged exposure of the membranes to the beta-adrenergic antagonists (half-time: 1 min), is stereospecific, concentration-dependent and almost complete with high concentrations of antagonists. p[NH]ppG, which reduces the affinity of fat cell beta-adrenergic receptors for agonists, does not prevent the antagonist-induced decrease in the receptor number. The magnitude of the desensitizating effect induced separately by (-)-isoproterenol and (-)-propranolol is not additive in membranes exposed to both drugs, suggesting that the receptors lost after exposure to agonists are the same sites as part of those lost after exposure to antagonists. However, contrary to the results found in membranes desensitized by agonists, adenylate cyclase activity remained fully responsive to catecholamines in membranes exposed to beta-antagonists. As shown by kinetic studies on (-)-[3H]dihydroalprenolol binding, this beta-antagonist-induced receptor desensitization is reversible after prolonged incubation. These data which have never yet been described in the other reported desensitizable beta-adrenergic systems, suggest that, when exposed to beta-antagonists, the fat cell beta-adrenergic receptors undergo a conformational change leading to a peculiar state which has low affinity for antagonists but behaves towards agonists as does the receptor in its resting state.  相似文献   

18.
A direct radioligand binding technique utilizing the beta-adrenergic antagonist [3H]dihydroalprenolol was employed in the identification and characterization of Trypanosoma cruzi beta-adrenergic receptors. [3H]DHA binding was saturable (Bmax = 1.5 pmol/10(6) cells) with an apparent equilibrium dissociation constant (Kd) of 127 nM. Binding of [3H]DHA was displaced by propranolol in a concentration-dependent manner. The relative potency order of adrenergic ligands in displacing [3H]DHA binding was: propranolol greater than or equal to alprenolol greater than epinephrine. 5-Hydroxytryptamine, phentolamine and catechol had no effect. The experimental results support the suggestion that beta-adrenergic receptors are present in the pathogenic protozoa Trypanosoma cruzi.  相似文献   

19.
[3H]Yohimbine, a potent alpha 2-adrenergic antagonist, was used to label the alpha-adrenergic receptors in membranes isolated from human platelets. Binding of [3H]yohimbine to platelet membranes appears to have all the characteristics of binding to alpha-adrenergic receptors. Binding reached a steady state in 2-3 min at 37 degrees C and was completely reversible upon the addition of excess phentolamine or yohimbine (both at 10(-5) M; t1/2 = 2.37 min). [3H]Yohimbine bound to a single class of noncooperative sites with a dissociation constant of 1.74 nM. At saturation, the total number of binding sites was calculated to be 191 fmol/mg protein. [3H]Yohimbine binding was stereo-specifically inhibited by epinephrine: the (-) isomer was 11-times more potent that the (+) isomer. Catecholamine agonists competed for the occupancy of the [3H]yohimbine-binding sites with an order of potency: clonidine greater than (-)-epinephrine greater than (-)-norepinephrine much greater than (-)-isoproterenol. The potent alpha-adrenergic antagonist, phentolamine, competed for the sites whereas the beta-antagonist, (+/-)-propranolol, was very weak inhibitor. 0.1 mM GTP reduced the binding affinity of the agonists, while producing no change in antagonist-binding affinity. Dopamine and serotonin competed only at very high concentrations. Similarly, muscarinic cholinergic ligands were also poor inhibitors of [3H]yohimbine binding. These results suggest that [3H]yohimbine binding to hunan platelet membranes is specific, rapid, saturable, reversible and, therefore, can be successfully used to label alpha 2-adrenergic receptors.  相似文献   

20.
The hippocampal formation has been extensively research in terms of its putative neurotransmitters, anatomical connections, and behavioral relevance. An aspect of importance is the assessment of apparent neurotransmitter receptors by using receptor binding assays. In the present study, such assays were done in vitro to investigate alpha 1-adrenergic, alpha 2-adrenergic, beta-adrenergic, muscarinic cholinergic, benzodiazepine, and opiate receptors in the rat hippocampal formation. The corresponding radioligands for these receptors were [3H]prazosin, [3H]p-aminoclonidine, [3H]dihydroalprenolol, [3H]quinuclidinyl benzilate, [3H]flunitrazepam, and [3H]naloxone. An analysis of the binding parameters for the ligands indicated saturable binding of a high affinity and the following rank order of maximal binding capacities: [3H]flunitrazepam greater than [3H]quinuclidinyl benzilate greater than [3H]naloxone greater than [3H]p-aminoclonidine greater than [3H]prazosin greater than [3H]dihydroalprenolol. Competition experiments with pharmacologic agonists and antagonists confirmed the specificity of each ligand. The results are integrated with information on other types of receptors and with neurotransmitter concentrations, and discussed in terms of hippocampal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号