首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytoremediation is an established technology for the treatment of explosives in water and soil. This study investigated the possibility of using slurried plants (or phytoslurries) to treat explosives (TNT and RDX). The degradation of TNT in solution using intact and slurried parrotfeather (Myriophyllum aquaticum), spinach (Spinicia oleracea), and mustard greens (Brassica juncea) was evaluated. Phytoslurries of parrotfeather and spinach removed the TNT faster than the intact plant. Conversely, the removal rate constants for slurried and intact mustard greens were about the same. A study using pressurized heating to destroy enzymatic activity in the phytoslurries was also conducted to compare removal from released plant chemicals to adsorptive removal. Aqueous phase removal of TNT by autoclaved spinach phytoslurry was compared with nonautoclaved spinach phytoslurry. The autoclaved phytoslurry did remove TNT, but not as completely as nonautoclaved slurry. This suggests that some removal is due to adsorption, but not all. Phytoslurries of mustard greens and parrotfeather had higher RDX removal rates compared with intact plant removal, but the rates for parrotfeather in either case were relatively low. Phytoslurries of spinach had relatively modest increases in RDX removal rates compared with intact plant. Studies were then conducted with phytoslurry/soil mixtures at two scales: 60 ml and 1.5 l. In both cases, phytoslurries of mustard greens and spinach removed TNT and RDX at higher levels than control slurries.  相似文献   

2.
Alkaline hydrolysis and subcritical water degradation were investigated as ex-situ remediation processes to treat explosive-contaminated soils from military training sites in South Korea. The addition of NaOH solution to the contaminated soils resulted in rapid degradation of the explosives. The degradation of explosives via alkaline hydrolysis was greatly enhanced at pH ≥12. Estimated pseudo-first-order rate constants for the alkaline hydrolysis of 2,4-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in contaminated soil at pH 13 were (9.6?±?0.1)×10?2, (2.2?±?0.1)×10?1, and (1.7?±?0.2)×10?2 min?1, respectively. In the case of subcritical water degradation, the three explosives were completely removed at 200–300°C due to oxidation at high temperatures and pressures. The degradation rate increased as temperature increased. The pseudo-first-order rate constants for DNT, TNT, and RDX at 300°C were (9.4?±?0.8)×10?2, (22.8?±?0.3)×10?2, and (16.4?±?1.0)×10?2, respectively. When the soil-to-water ratio was more than 1:5, the extent of alkaline hydrolysis and subcritical water degradation was significantly inhibited.  相似文献   

3.
Microcosm tests simulating bioslurry reactors with 40% soil content, containing high concentrations of TNT and/or RDX, and spiked with either [14C]-TNT or [14C]-RDX were conducted to investigate the fate of explosives and their metabolites in bioslurry treatment processes. RDX is recalcitrant to indigenous microorganisms in soil and activated sludge under aerobic conditions. However, soil indigenous microorganisms alone were able to mineralize 15% of RDX to CO2 under anaerobic condition, and supplementation of municipal anaerobic sludge as an exogenous source of microorganisms significantly enhanced the RDX mineralization to 60%. RDX mineralizing activity of microorganisms in soil and sludge was significantly inhibited by the presence of TNT. TNT mineralization was poor (< 2%) and was not markedly improved by the supplement of aerobic or anaerobic sludge. Partitioning studies of [14C]-TNT in the microcosms revealed that the removal of TNT during the bioslurry process was due mainly to the transformation of TNT and irreversible binding of TNT metabolites onto soil matrix. In the case of RDX under anaerobic conditions, a significant portion (35%) of original radioactivity was also incorporated into the biomass and bound to the soil matrix.  相似文献   

4.
The explosives TNT, HMX, and RDX are integral components of many munitions. The wastes from the manufacture and the use of these and other explosives has resulted in substantial contamination of water and soil. White rot fungi have been proposed for use in the bioremediation of contaminated soil and water. Strains of Phanerochaete chrysosporium and Pleurotus ostreatus adapted to grow on high concentrations of TNT were studied with regard to their ability to degrade TNT in liquid cultures. Both strains were able to cause extensive degradation of TNT. Field bioremediation studies using P. ostreatus were performed on site at the Yorktown Naval Weapons Station Yorktown (Yorktown, VA). In two plots, 6 cubic yards of soil contaminated with TNT, HMX, and RDX were blended with 3 cubic yards of a substrate mixture containing nutrients that promote the growth of fungi. In soil amended with growth substrate and P. ostreatus, concentrations of TNT, HMX and RDX were reduced from 194.0±50, 61±20 mg/kg and 118.0±30 to 3±4, 18±7 and 5±3?mg/kg, respectively, during a 62-day incubation period. Interestingly, in soil that was amended with this substrate mixture, but not with P. ostreatus, the concentrations of TNT, HMX, and RDX were also reduced substantially from 283±100, 67±20, and 144±50?mg/kg to 10±10, 34±20, and 12±10?mg/kg, respectively, during the same period. Thus, it appears that addition of amendments that enhance the growth and activity of indigenous microorganisms was sufficient to promote extensive degradation of these compounds in soil.  相似文献   

5.
The ability of Phanerochaete chrysosporium to bioremediate TNT (2,4,6-trinitrotoluene) in a soil containing 12,000 ppm of TNT and the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5- triazine; 3,000 ppm) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 300 ppm) was investigated. The fungus did not grow in malt extract broth containing more than 0.02% (wt/vol; 24 ppm of TNT) soil. Pure TNT or explosives extracted from the soil were degraded by P. chrysosporium spore-inoculated cultures at TNT concentrations of up to 20 ppm. Mycelium-inoculated cultures degraded 100 ppm of TNT, but further growth was inhibited above 20 ppm. In malt extract broth, spore-inoculated cultures mineralized 10% of added [14C]TNT (5 ppm) in 27 days at 37 degrees C. No mineralization occurred during [14C]TNT biotransformation by mycelium-inoculated cultures, although the TNT was transformed.  相似文献   

6.
The ability of Phanerochaete chrysosporium to bioremediate TNT (2,4,6-trinitrotoluene) in a soil containing 12,000 ppm of TNT and the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5- triazine; 3,000 ppm) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 300 ppm) was investigated. The fungus did not grow in malt extract broth containing more than 0.02% (wt/vol; 24 ppm of TNT) soil. Pure TNT or explosives extracted from the soil were degraded by P. chrysosporium spore-inoculated cultures at TNT concentrations of up to 20 ppm. Mycelium-inoculated cultures degraded 100 ppm of TNT, but further growth was inhibited above 20 ppm. In malt extract broth, spore-inoculated cultures mineralized 10% of added [14C]TNT (5 ppm) in 27 days at 37 degrees C. No mineralization occurred during [14C]TNT biotransformation by mycelium-inoculated cultures, although the TNT was transformed.  相似文献   

7.
Summary Composting was investigated as a bioremediation technology for clean-up of sediments contaminated with explosives and propellants. Two field demonstrations were conducted, the first using 2,4,6-trinitrotoluene (TNT), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine (HMX), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and N-methyl-N,2,4,6-tetranitroaniline (tetryl) contaminated sediment, and the second using nitrocellulose (NC) contaminated soil. Tests were conducted in thermophilic and mesophilic aerated static piles. Extractable TNT was reduced from 11840 mg/kg to 3 mg/kg, and NC from 13090 mg/kg to 16 mg/kg under thermophilic conditions. Under mesophilic conditions, TNT was reduced from 11 190 mg/kg to 50 mg/kg. The thermophilic and mesophilic half-lives were 11.9 and 21.9 days for TNT, 17.3 and 30.1 days for RDX, and 22.8 and 42.0 days for HMX, respectively. Known nitroaromatic transformation products increased in concentration over the first several weeks of the test period, but decreased to low concentrations thereafter.  相似文献   

8.
The uptake and fate of 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by hybrid poplars in hydroponic systems were compared and exposed leaves were leached with water to simulate potential exposure pathways from groundwater in the field. TNT was removed from solution more quickly than nitramine explosives. Most of radioactivity remained in root tissues for 14C-TNT, but in leaves for 14C-RDX and 14C-HMX. Radiolabel recovery for TNT and HMX was over 94%, but that of RDX decreased over time, suggesting a loss of volatile products. A considerable fraction (45.5%) of radioactivity taken up by whole plants exposed to 14C-HMX was released into deionized water, mostly as parent compound after 5 d of leaching. About a quarter (24.0%) and 1.2% were leached for RDX and TNT, respectively, mostly as transformed products. Leached radioactivity from roots was insignificant in all cases (< 2%). This is the first report in which small amounts of transformation products of RDX leach from dried leaves following uptake by poplars. Such behavior for HMX was reported earlier and is reconfirmed here. All three compounds differ substantially in their fate and transport during the leaching process.  相似文献   

9.
There is increased interest in how to balance military preparedness and environmental protection at Department of Defense (DoD) facilities. This research evaluated a peat moss-based technology to enhance the adsorption and biodegradation of explosive residues at military testing and training ranges. The evaluation was performed using 30-cm-long soil columns operated under unsaturated flow conditions. The treatment materials were placed at the soil surface, and soil contaminated with 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) was spread over the surface. Simulated rainfall initiated dissolution and leaching of the explosive compounds, which was monitored at several depths within the columns. Peat moss plus soybean oil reduced the soluble concentrations of TNT, RDX and HMX detected at 10 cm depth by 100%, 60%, and 40%, respectively, compared to the no-treatment control column. Peat moss alone reduced TNT and HMX concentrations at 10 cm depth relative to the control, but exhibited higher soluble RDX concentrations by the end of the experiment. Concentrations of HMX and RDX were also reduced at 30 cm depth by the peat moss plus soybean oil treatments relative to those observed in the control column. These preliminary results demonstrate proof-of-concept of a low cost technology for reducing the contamination of groundwater with explosives at military test and training ranges.  相似文献   

10.
Environmental contamination by nitro compounds is associated principally with the explosives industry. However, global production and use of explosives is unavoidable. The presently widely used nitro-explosives are TNT (Trinitrotoluene), RDX (Royal Demolition Explosive) and HMX (High Melting Explosive). Nevertheless, the problems of these nitro-explosives are almost parallel due to their similarities of production processes, abundance of nitro-explosives and resembling chemical structures. The nitro-explosives per se as well as their environmental transformation products are toxic, showing symptoms as methaemoglobinaemia, kidney trouble, jaundice etc. Hence their removal/degradation from soil/water is essential. Aerobic and anaerobic degradation of TNT and RDX have been reported, while for HMX anaerobic or anoxic degradation have been described in many studies. A multisystem involvement using plants in remediation is gaining importance. Thus the information about degradation of nitro-explosives is available in jigsaw pieces which needs to be arranged and lacunae filled to get concrete degradative schemes so that environmental pollution from nitro-explosives can be dealt with more successfully at a macroscale. An overview of the reports on nitro-explosives degradation, future outlook and studies done by us are presented in this review.  相似文献   

11.
Many enteric bacteria express a type I oxygen-insensitive nitroreductase, which reduces nitro groups on many different nitroaromatic compounds under aerobic conditions. Enzymatic reduction of nitramines was also documented in enteric bacteria under anaerobic conditions. This study indicates that nitramine reduction in enteric bacteria is carried out by the type I, or oxygen-insensitive nitroreductase, rather than a type II enzyme. The enteric bacterium Morganella morganii strain B2 with documented hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) nitroreductase activity, and Enterobacter cloacae strain 96-3 with documented 2,4,6-trinitrotoluene (TNT) nitroreductase activity, were used here to show that the explosives TNT and RDX were both reduced by a type I nitroreductase. Morganella morganii and E. cloacae exhibited RDX and TNT nitroreductase activities in whole cell assays. Type I nitroreductase, purified from E. cloacae, oxidized NADPH with TNT or RDX as substrate. When expression of the E. cloacae type I nitroreductase gene was induced in an Escherichia coli strain carrying a plasmid, a simultaneous increase in TNT and RDX nitroreductase activities was observed. In addition, neither TNT nor RDX nitroreductase activity was detected in nitrofurazone-resistant mutants of M. morganii. We conclude that a type I nitroreductase present in these two enteric bacteria was responsible for the nitroreduction of both types of explosive.  相似文献   

12.
The common military explosives 2-methyl-1,3,5-trinitrobenzene (TNT), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) are distributed in many military training areas, and are thus encountered by grazing animals. The aim of this study was to examine small ruminant's intake of forage contaminated with explosives. An indoor, experimental setup was used to determine if contamination of forage by these compounds affected intake by sheep. The results clearly demonstrate that contamination by any of the three explosives reduced forage intake in sheep; in order of increasing avoidance: RDX < TNT < HMX. The results are discussed in a risk assessment context.  相似文献   

13.
Environmental contamination by explosives is a worldwide problem. Of the 20 energetic compounds, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are the most powerful and commonly used. Nitroamines are toxic and considered as possible carcinogens. The toxicity and persistence of nitroamines requires that their fate in the environment be understood and that contaminated soil and groundwater be remediated. This study, written as a minireview, provides further insights for plant processes important for the transformation and degradation of explosives. Plants metabolize TNT and the distribution of the transformation products, conjugates, and bound residues appears to be consistent with the green liver model concept. Metabolism of TNT in plants occurs by reduction as well as by oxidation. Reduction probably plays an important role in the tolerance of plants towards TNT, and, therefore a high nitroreductase capacity may serve as a biochemical criterion for the selection of plant species to remediate TNT. Because the activities and the inducibilities of the oxidative enzymes are far lower than of nitroreductase, reducing processes may predominate. However, oxidation may initiate the route to conjugation and sequestration leading ultimately to detoxification of TNT, and, therefore, particularly the oxidative pathway deserves more study. It is possible that plants metabolize RDX also according to the green liver concept. In the case of plant metabolism of HMX, a conclusion regarding compliance with the green liver concept was not reached due to the limited number of available data.  相似文献   

14.
A pink-pigmented symbiotic bacterium was isolated from hybrid poplar tissues (Populus deltoides x nigra DN34). The bacterium was identified by 16S and 16S-23S intergenic spacer ribosomal DNA analysis as a Methylobacterium sp. (strain BJ001). The isolated bacterium was able to use methanol as the sole source of carbon and energy, which is a specific attribute of the genus Methylobacterium. The bacterium in pure culture was shown to degrade the toxic explosives 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazene (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine (HMX). [U-ring-(14)C]TNT (25 mg liter(-1)) was fully transformed in less than 10 days. Metabolites included the reduction derivatives amino-dinitrotoluenes and diamino-nitrotoluenes. No significant release of (14)CO(2) was recorded from [(14)C]TNT. In addition, the isolated methylotroph was shown to transform [U-(14)C]RDX (20 mg liter(-1)) and [U-(14)C]HMX (2.5 mg liter(-1)) in less than 40 days. After 55 days of incubation, 58.0% of initial [(14)C]RDX and 61.4% of initial [(14)C]HMX were mineralized into (14)CO(2). The radioactivity remaining in solution accounted for 12.8 and 12.7% of initial [(14)C]RDX and [(14)C]HMX, respectively. Metabolites detected from RDX transformation included a mononitroso RDX derivative and a polar compound tentatively identified as methylenedinitramine. Since members of the genus Methylobacterium are distributed in a wide diversity of natural environments and are very often associated with plants, Methylobacterium sp. strain BJ001 may be involved in natural attenuation or in situ biodegradation (including phytoremediation) of explosive-contaminated sites.  相似文献   

15.
The Pantex facility near Amarillo, Texas, has soil and groundwater contaminated with differing combinations of high explosives (HEs), including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 2,4,6-trinitrotoluene (TNT). This project was concerned with direct treatment of HMX in groundwater withdrawn at this plant. Several physical and chemical treatment schemes for the treatment of HMX have been successful. However, the successful biological treatment of HMX has been limited to anaerobic environments. The objective of this work was to identify microbial consortia and amendments capable of aerobically biodegrading HMX in water. Microbial consortia and amendments employed were provided as livestock manure and soil with its indigenous flora from nearby historically contaminated sites. Possible losses of HMX by nonbiological means such as adsorption and photolysis were accounted for by appropriate abiotic experiments. Loss of the parent compound was measured by high-performance liquid chromatography, using a modification of U.S. Environmental Protection Agency (EPA) Method 8330. Results varied from no degradation to a reduction of parent HMX from 6 to 1 mg/L in 5.2 days. Evidence for biodegradation was supported by the appearance of metabolites. Metabolite identification was performed at Oak Ridge National Laboratory. Five metabolites (four intermediate and one final) were identified.  相似文献   

16.
Phytoremediation is a viable technique for treating nitroaromatic compounds, particularly munitions. Continuous flow phyto-reactor studies were conducted at the following three influent concentrations of 2,4,6-trinitrotoluene (TNT): 1, 5, and 10?ppm. A control was also prepared with an influent TNT concentration of 5 ppm. Flow rates were systematically reduced to increase hydraulic retention times (HRT) which ranged from 12 to 76 days. Initially, the control reactor removed TNT as efficiently as the plant reactors. With time, however, the efficiency of the control became less than that of the plant reactors, suggesting that adsorption was initially the mechanism for removal. Up to 100% of the TNT was removed. Aminodinitrotoluene (ADNT) effluent concentration was higher for higher TNT influent concentrations. Increasing the retention time reduced ADNT concentration in the effluent. Supplementary batch studies confirmed that ADNT and diaminonitrotoluene (DANT) were phytodegraded. Preliminary batch studies were also conducted on the degradation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine). These batch studies indicated that the degradation of RDX was slower than that for TNT. A study with HMX indicated that the removal rates were reasonable, but required a lag phase.  相似文献   

17.
18.
Solid fragments of explosives in soil are common in explosives testing and training areas. In this study we initially sieved the upper 6 in of contaminated soil through a 3-mm mesh, and found 2,4,6-trinitrotoluene (TNT) fragments. These contributed to an estimated concentration of 1.7 kg per cubic yard soil, or for 2000 ppm TNT in the soil. Most of the fragments ranged 4 mm to 10 mm diameter in size, but explosives particles weighing up to 56 g (about 4 cm diameter) were frequently observed. An acetone pretreatment/composting system was then demonstrated at field scale. The amount of acetone required for a TNT-dissolving slurry process was controlled by the viscosity of the soil/acetone mix rather than the TNT dissolution rate. The amount needed was estimated at about 55 gallons acetone per cubic yard soil. Smaller, 5- to 10-mm-diameter fragments went into solution in less than 15 min at a mixer speed of 36 rpm, with a minimum of 2 g TNT going into solution per 30 min for the larger chunks. The slurries were then mixed with compost starting materials and composted in a vented 1 yd3 container. After 34 days incubation time TNT was below the site-specific regulatory threshold of 44 ppm. TNT metabolites and acetone were also below their regulatory thresholds established for the site.  相似文献   

19.
Several areas of the Massachusetts Military Reservation (MMR) have soils with significant levels of high explosives (HE) contamination because of a long history of training and range activities (such as open burning, open detonation, disposal, and artillery and mortar firing). Site-specific transport and attenuation mechanisms were assessed in sandy soils for three contaminants of concern: the nitramine hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and the nitroaromatics 2,4-dinitrotolune (2,4-DNT) and 2,4,6-trinitrotoluene (TNT). For all three contaminants, linear distribution coefficients (Kd) were dependent on the fraction of organic carbon in soil. The nitroaromatics sorbed much more strongly than RDX in both soils. Over 120 hours, the desorption rate of RDX from field contaminated surface soil was much slower than its sorption rate, with the desorption Kd (1.5 L/kg) much higher than Kd for sorption (0.37 L/kg). Desorption of 2,4-DNT was negligible over 120 hours. Thus, applying sorption-derived Kd values for transport modeling may significantly overestimate the flux of explosives from MMR soils. Based on multiple component column transport tests, RDX will be the most mobile of these contaminants in MMR soils. In saturated columns packed with uncontaminated soil, RDX broke through rapidly, whereas the nitroaromatics were significantly attenuated by irreversible sorption or abiotic transformations.  相似文献   

20.
Explosive contamination in soil is a great concern for environmental health. Following 50 years of munitions manufacturing and loading, soils from two different sites contained ≥ 6,435 mg 2,4,6-trinitrotoluene (TNT), 2,933 mg hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,135 mg octahydrol-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) kg? 1 soil. Extractable nitrate-N was as high as 315 and ammonium-N reached 150 mg N kg? 1 soil. Water leachates in the highly contaminated soils showed near saturation levels of TNT and RDX, suggesting great risk to water quality. The long-term contamination resulted in undetectable fungal populations and as low as 180 bacterial colony forming units (CFU) g–1 soil. In the most severely contaminated soil, dehydrogenase activity was undetectable and microbial biomass carbon was very low (< 3.4 mg C mic kg–1 soil). The diminished biological activity was a consequence of long-term contamination because short-term (14 d) contamination of TNT at up to 5000 mg TNT kg–1 soil did not cause a decline in the culturable bacterial population. Natural attenuation may not be a feasible remediation strategy in soils with long-term contamination by high concentrations of explosives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号