首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Lead (Pb) is a non-biodegradable contaminant, present in the environment, especially near lead-based industrial sites, agricultural lands, and roadside soils. Bioavailability of Pb in the soil is controlled by the sorption and desorption behavior of Pb, which are further controlled by the soil chemical and physical properties. In this study, sorption and desorption amounts of Pb in soil were compared with soil physical (sand, silt, clay content) and chemical (pH; electrical conductivity, EC; percent organic carbon, (%OC); cation exchange capacity, CEC) properties. Twenty-six surface soils (0–5cm), expected to vary in physical and chemical properties, were collected from different parts of India and were treated with known concentration of Pb solution (40 μg/L). The amount of Pb sorbed and desorbed were measured and correlated with soil properties using simple linear regressions. Sorption was significantly (p ≤ 0.05) and positively correlated with pH, and %OC; desorption was significantly (p ≤ 0.05) negatively correlated with the same two factors. Stepwise multiple regressions were performed for better correlations. Predicted sorption and desorption amounts, based on multiple regression equations, showed reasonably good fit (R2 = 0.79 and 0.83, respectively) with observed values. This regression model can be used for estimation of sorption and desorption amounts at contaminated sites.  相似文献   

2.
To explore the effect of exogenic dissolved organic matter (DOM) on Cu(II) sorption in agricultural soils, 26 agricultural soils were collected across China. Exogenic dissolved organic matter, extracting from wheat straw (DOMW) and swine manure (DOMS), respectively, were added to the soils to conduct a series of batch sorption and characterization experiments. The solid-liquid partition coefficient (Kd) ranged from 0.02 to 76.46 L g?1, suggesting different Cu(II) sorption on various soils. PCA analysis indicated that pH, free Fe/Al oxides, carbon, and total Cu content had a significant positive relationship with the Cu(II) sorption, respectively. And the contribution rate of pH was the highest (38.15%). Moreover, DOM markedly inhibited the Cu(II) sorption in alkaline soils while promoted the Cu(II) sorption in acidic soils, which were interacted by the soil properties and DOM characteristics. The effect of DOMS on Cu(II) sorption were more obvious than DOMW, which were further confirmed by Fourier transform infrared (FTIR) spectroscopy. FTIR also showed Cu(II) was primarily adsorbed on the specific functional groups, such as CO, OH, and CO, providing direct evidences for the binding of Cu(II) with DOM. This study can guide the rational use of organic fertilizers, and also provide baseline knowledge for the prevention and control of soil pollution.  相似文献   

3.
Beach Ridges Interspersed with Swales (BRIS) is a sandy soil and in Malaysia it is found exclusively in the east coast of Peninsular Malaysia. It is a marginal soil because of its low nutrient and water-holding capacity. However, with proper management and organic matter amendments some areas with BRIS soil are cultivated. Napropamide is a selective herbicide widely used to control weeds in BRIS soil. No previous studies have been reported on the effects of organic matter amendments on napropamide sorption in BRIS soil. This study was conducted to determine sorption and desorption of napropamide in BRIS soil amended with chicken dung (CD) and palm oil mill effluent (POME) at 0, 20, 40, and 80 Mg ha?1. Potential interaction of dissolved organic carbon (DOC) with napropamide and their competition for sorption sites were also determined. Sorption isotherm data were fitted to the log-transformed Freundlich's equation. Sorption of napropamide was higher in soils amended with CD and POME as compared to non-amended soil. At the same rates of application, sorption was higher in soil amended with CD than POME. The Freundlich's coefficient (Kf) values were 0.22, 3.96, and 41.6 for nonamended soil, soil amended with 80 Mg ha?1 POME, and soil amended with 80 Mg ha?1 CD, respectively. Desorption of napropamide showed positive hysteresis and the hysteresis were greater with higher rates of CD and POME. There was no association between napropamide and DOC extracted from BRIS soil amended with either CD or POME and also there were no competitions between napropamide and DOC extracted from either CD or POME for sorption sites of the soil samples.  相似文献   

4.
In order to select appropriate amendments for cropping hyperaccumulator or normal plants on contaminated soils and establish the relationship between Cd sorption characteristics of soil amendments and their capacity to reduce Cd uptake by plants, batch sorption experiments with 11 different clay minerals and organic materials and a pot experiment with the same amendments were carried out. The pot experiment was conducted with Sedum alfredii and maize (Zea mays) in a co-cropping system. The results showed that the highest sorption amount was by montmorillonite at 40.82 mg/g, while mica was the lowest at only 1.83 mg/g. There was a significant negative correlation between the n value of Freundlich equation and Cd uptake by plants, and between the logarithm of the stability constant K of the Langmuir equation and plant uptake. Humic acids (HAs) and mushroom manure increased Cd uptake by S. alfredii, but not maize, thus they are suitable as soil amendments for the co-cropping S. alfredii and maize. The stability constant K in these cases was 0.14–0.16 L/mg and n values were 1.51–2.19. The alkaline zeolite and mica had the best fixation abilities and significantly decreased Cd uptake by the both plants, with K ≥ 1.49 L/mg and n ≥ 3.59.  相似文献   

5.
Little is known of the mechanisms employed by woody plants to acquire key resources such as water and nutrients in hyperarid environments. For phreatophytic plants, deep roots are necessary to access the water table, but given that most nutrients in many desert ecosystems are stored in the upper soil layers, viable shallow roots may be equally necessary for nutrient uptake. We sought to better understand the interaction between water and nutrient uptake from soil horizons differing in the relative abundance of these resources. To this end, we monitored plant water and nutrient status before and after applying flood irrigation to four phreatophytic perennial plant species in the remote hyperarid Taklamakan desert in western China. Sap flow in the roots of five plants of the perennial desert species Alhagi sparsifolia Shap., Karelina caspica (Pall.) Less., Calligonum caput medusea Schrenk, and Eleagnus angustifolia Hill. was monitored using the heat ratio method (HRM). Additionally we measured predawn and midday water potential, foliar nitrate reductase activity (NRA), xylem sap nutrient concentration and the concentration of total solutes in the leaves before, 12 and 96 h after flooding to investigate possible short-term physiological effects on water and nutrient status. Rates of sap flow measured during the day and at night in the absence of transpiration did not change after flooding. Moderately high rates of sap flow (HRM heat pulse velocity, 5–25 cm h−1) detected during the day in soils that had a near zero water content at the surface indicated that all species had contact to groundwater. There was no evidence from sap flow data that plants had utilised flood water to increase maximum rates of transpiration under similar climatic conditions, and there was no evidence of a process to improve the efficiency of water or nutrient uptake, such as hydraulic redistribution (i.e. the passive movement of water from moist soil to very dry soil via roots). Measurements of plant water status, xylem sap nutrient status, foliar NRA and the concentration of osmotically active substances were also unaffected by flood irrigation. Our results clearly show that groundwater acts as the major source of water and nutrients for these plants. The inability of plants to utilise abundant surface soil–water or newly available nutrients following irrigation was attributed to the absence of fine roots in the topsoil layer.  相似文献   

6.
Due to global warming, there is a need to increase the water use efficiency of crops under rainfed agriculture, particularly in semi-arid regions. Therefore, the effect of NPK fertilizer application (with or without liming) on the water use efficiency of a maize/cowpea intercropping system was investigated in the semi-arid part of Brazil. The crops were grown on a strongly acidic, sandy soil with three treatments: (i) Complete NPK fertilizer application with lime (Compl), (ii) Complete NPK fertilizer application without lime (Compl-L) and (iii) Control. On the average, dry matter production was 2.6 times higher with the Compl treatment than in the Control and 1.6 times higher than in the Compl-L treatment. The soil water balance was calculated with two different model approaches (HILLFLOW and EPICSEAR). When checked against measured soil water content during the growing period, both models produced accurate results, but only EPICSEAR was sensitive to the effects of liming and fertilizer application on soil water balance and dry matter production at this site. Comparison between the Compl and the Compl-L treatments shows that the increase in transpirational water use efficiency (WUET) (+63 and +80%, respectively) is mainly due to the application of NPK. Although the site is highly acid, liming was of minor importance for increasing the WUET. However, observations and simulations demonstrate that, through the additional application of lime, the gross water use efficiency (WUEC) in a maize/cowpea intercropping system can be increased by 60% compared to sole application of NPK and by more than 160% compared to the control. Abbreviations: EPIC – erosion productivity impact calculator; EPICSEAR – erosion productivity impact calculator for semi-arid regions; TDR – time domain reflectometry; WUE – water use efficiency.  相似文献   

7.
Pullulan-sodium alginate blend films were prepared and characterized as a function of water activity (aw). At low aw, the incorporation of alginate into pullulan film increased the tensile strength and elastic modulus, but decreased the elongation at break of the composite films; the opposite trends were observed at elevated aw. Above 0.43 aw, water exerted a typical plasticization effect upon the biopolymer blends. As aw increased from 0.23 to 0.43, an anti-plasticization effect was observed as tensile strength and elastic modulus increased. The glass transition temperature of all samples decreased substantially as aw increased from 0.23 to 0.84 due to the plasticization effect of water. Within this aw range, one transition temperature was observed for all film specimens. The stretching vibration band of O-H was investigated using attenuated total reflection Fourier transform infrared spectroscopy to identify the various species of water interacting with the polysaccharide films.  相似文献   

8.
Esterifications catalysed by immobilised lipase from Candida rugosa (CRL) in cyclohexane at constant water activity (aw = 0.76) were studied using 2-methyl substituted octa-, nona- or decanoic acids and n-alcohols of varying chain length as substrates. The importance of controlling the water activity and choosing the right alcohol for obtaining maximum enantioselectivity is demonstrated. The immobilised lipase was easily recovered without loss of activity and enantioselectivity.  相似文献   

9.
Esterifications catalysed by immobilised lipase from Candida rugosa (CRL) in cyclohexane at constant water activity (aw = 0.76) were studied using 2-methyl substituted octa-, nona- or decanoic acids and n-alcohols of varying chain length as substrates. The importance of controlling the water activity and choosing the right alcohol for obtaining maximum enantioselectivity is demonstrated. The immobilised lipase was easily recovered without loss of activity and enantioselectivity.  相似文献   

10.
Contamination of soils by effluents from industries is on the increase. There is the possibility of remediating these contaminated soils through the use of certain plants. This work investigated the remediating ability of Helianthus annuus and Tithonia diversifolia on the soil polluted with effluents from a paint industry in Ibadan, Nigeria. The experiment consisted of three treatments (H. annuus, T. diversifolia, and control) each replicated three times in a factorial combination of four different fertility managements, viz mineral fertilizer (MF); Grade A organomineral fertilizer (OMF); control1, plants without fertilizer application; and control2, where no fertilizer and no crop was planted using randomized complete block design. A total of 12 plots of 2 × 4 m2 each per phytoplant were obtained. Each plot was planted with the viable seeds of the phytoplant at a spacing of 60 × 30 cm2 and at the seed rate of four seeds per hole. The seedlings were thinned to two stands per hole 2 weeks after planting (WAP) and also weeded two times (2 and 5 WAP). After in situ second successive cultivation, percentage removal of heavy metals by Helianthus annuus with MF and OMF, respectively, were Cu 32.5 and 41.6; Pb 30.3 and 42.8; and Cd 44.5 and 56.7. Tithonia diversifolia, similarly, removed, respectively, Cu 16.9 and 23.4; Pb 36.9 and 43.7; and Cd 20.1 and 35.1. Lower percentages were removed in the controls where no fertilizer was applied. In the shoot of H. annuus with OMF, significantly (p< .05) higher values of 0.27, 1.72, and 0.11 mg kg?1 of Cu, Pb, and Cd, respectively, were removed and stored at second cultivation as against 0.21, 3.39 and 0.08 mg kg?1 in the shoot of T diversifolia. Lower values of Cu, Pb, and Cd were removed with MF, and also at first cultivation with OMF and MF. This study therefore recommends the use of sunflower plants, whether hybrids or wild-types along with the application of OMF for the effective remediation of soils contaminated with heavy metals, particularly in tropical climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号