首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
We assessed the desorption behavior of pyrene, chrysene, phenanthrene, and tri-alkylated (C3) phenanthrene/anthracenes for non-vegetated and recently vegetated (< 2 yrs) fuel-oiled sediments collected from the Indiana Harbor Canal (IHC), Gary, IN. Bulk sediment and humin were analyzed for PAH concentrations, organic matter composition, and PAH desorption behavior. PAH desorption isotherms and kinetics were determined using batch aqueous extractions and a two compartment, first-order kinetic model. Vegetated sediments contained more plant carbon and were more nonpolar and less oxidized than non-vegetated sediments. Desorption kinetics indicated that PAH desorption was primarily controlled by a slow PAH-desorbing fraction (F2) of IHC sediments. However, in vegetated sediments, particularly humin, PAH release from a faster PAH-desorbing fraction (F1) increased as did the rates (k2) of PAH desorption from the dominant slow PAH-desorbing fraction (F2). We propose that vegetation provides aliphatic, nonpolar carbon to IHC sediments that facilitates more rapid PAH desorption from bulk sediment and humin.  相似文献   

2.
This study evaluated the effects of the water-miscible cosolvent and temperature on the sorption-desorption of polynuclear aromatic hydrocarbons (PAHs) from contaminated sediments in Chien-Jen River, Taiwan. Sediment samples from five sampling stations of downstream section were utilized in this study. Phenanthrene and anthracene were selected as target compounds. The cosolvent effect on sorption of phenanthrene and anthracene was examined by the addition of various volume fractions of methanol (i.e., 0.3, 0.5, 0.7, and 0.9, respectively) in the sediment/water systems. The utility of the log-linear cosolvency model for predicting PAH sorption from solvent mixtures was evaluated. An inverse relationship was observed for sorption coefficients of phenanthrene and anthracene as a function of increasing cosolvent. The effect of temperature on sorption of phenanthrene and anthracene was conducted at temperature from 10°C to 40°C. The use of elevated temperatures in desorption experiments increased the PAH release from sediments. It was observed that sorption of phenanthrene and anthracene onto sediments decreased when temperature increased. The decrease of sorption coefficient of phenanthrene was more sensitive than that of anthracene. The magnitude of decreased sorption was attributed by the increased desorption rate constant, solubility, and heterogeneities of sediments.  相似文献   

3.
Two mechanisms of muddy-bottom meiofaunal dispersal, waterborne suspended transport and holobenthic infaunal immigration, were compared as to their rate and effectiveness in mediating community reestablishment after small-scale defaunation. Colonizing meiofauna were quantitatively sampled in winter and summer from 16 replicates of two azoic sediment chamber designs on 2 and 29 days postplacement. The chambers were ≈ 3750 cm3; one design allowed colonization via suspended movement through an open top, while the other design permitted entry only by infaunal crawling through subsurface open sides. After 48 h, mean harpacticoid copepod and naupliar densities in sediment chambers open to colonization exclusively by meiofauna in suspended transport were not significantly different from background sediment densities. Sediment chambers allowing colonization exclusively via infaunal immigration through the sediment, however, contained copepod and naupliar densities that were significantly less than densities in background sediments and suspension-colonized chambers. In contrast, nematode densities in both suspension- and infaunally colonized chambers were significantly less than in background sediments, but densities were not significantly different between the chamber treatments. Thus for a small-scale defaunation, copepods most rapidly and completely recolonize sediments via suspended transport. Nematode dispersal occurs equally well via suspended or infaunal movement; however nematodes never seemed to utilize the chambers fully because densities did not reach background levels even after 29 days.  相似文献   

4.
Tolerance and remedial function of submersed macrophyte Vallisneria spiralis to phenanthrene in freshwater sediments were investigated by manipulating initial phenanthrene concentrations in sediments from 8 to 80 mg kg−1 dry sediment. The biomass growth of V. spiralis on phenanthrene-spiked sediments was not adversely affected until initial phenanthrene concentrations in sediments increased to 80 mg kg−1 dry sediment. V. spiralis might evolve adaptive mechanisms to toxic contaminants in sediment, and then could change the growth patterns in order to decrease the toxicity on its growth. The removal efficiencies of phenanthrene from the planted sediments were 18% higher than those from the sediments without plant even under an initial phenanthrene concentration of 80 mg kg−1 dry sediments. The enhanced removal of phenanthrene in sediments by the plant might be achieved mainly by the synergism between plant roots and microbes in the rhizosphere.  相似文献   

5.
Yeast abundance in the sediments of 13 coastal sites in Massachusetts was quantified, and the potential of yeast isolates to biotransform polycyclic aromatic hydrocarbons (PAHs) was determined. Plate counts of yeasts varied between 10(2) to 10(7) CFU g (dry weight) of sediment-1. The most abundant genera isolated and identified included Candida, Cryptococcus, Rhodotorula, Torulopsis, and Trichosporon. More than 50% of the isolates from heavily contaminated sites transformed phenanthrene, as determined by spray-plate screening. The plate counts of phenanthrene-transforming yeasts correlated significantly to the sediment concentrations of phenanthrene. Transformation of [9-14C]phenanthrene and [12-14C]benz[a]anthracene by individual isolates varied greatly, ranging from 0.15 to 8.15 mumol of PAH g-1 in 120-h incubations. Of the isolated yeasts, Trichosporon penicillatum exhibited the greatest capacity for phenanthrene transformation. The ability to transform PAHs appears to be widespread among yeasts in coastal sediments.  相似文献   

6.
Two new polyaromatic hydrocarbon-degrading marine bacteria have been isolated from burrow wall sediments of benthic macrofauna by using enrichments on phenanthrene. Strain LC8 (from a polychaete) and strain M4-6 (from a mollusc) are aerobic and gram negative and require sodium chloride (>1%) for growth. Both strains can use 2- and 3-ring polycyclic aromatic hydrocarbons as their sole carbon and energy sources, but they are nutritionally versatile. Physiological and phylogenetic analyses based on 16S ribosomal DNA sequences suggest that strain M4-6 belongs to the genus Cycloclasticus and represents a new species, Cycloclasticus spirillensus sp. nov. Strain LC8 appears to represent a new genus and species, Lutibacterium anuloederans gen. nov., sp. nov., within the Sphingomonadaceae. However, when inoculated into sediment slurries with or without exogenous phenanthrene, only L. anuloederans appeared to sustain a significant phenanthrene uptake potential throughout a 35-day incubation. In addition, only L. anuloederans appeared to enhance phenanthrene degradation in heavily contaminated sediment from Little Mystic Cove, Boston Harbor, Boston, Mass.  相似文献   

7.
Sulfate reduction and sediment metabolism in Tomales Bay,California   总被引:3,自引:1,他引:2  
Sulfate reduction rates (SRR) in subtidal sediments of Tomales Bay, California, were variable by sediment type, season and depth. Higher rates were measured in near-surface muds during summer (up to 45 nmol cm-3 h-1), with lower rates in sandy sediments, in winter and deeper in the sediment. Calculations of annual, average SRR throughout the upper 20 cm of muddy subtidal sediments (about 30 mmol S m-2 d-1) were much larger than previously reported net estimates of SRR derived from both benthic alkalinity flux measurements and bay wide, budget stoichiometry (3.5 and 2.6 mmol m-2 d-1, respectively), indicating that most reduced sulfur in these upper, well-mixed sediments is re-oxidized. A portion of the net alkalinity flux across the sediment surface may be derived from sulfate reduction in deeper sediments, estimated from sulfate depletion profiles at 1.5 mmol m-2 d-1. A small net flux of CO2 measured in benthic chambers despite a large SRR suggests that sediment sinks for CO2 must also exist (e.g., benthic microalgae).  相似文献   

8.
Treatment of dredged sediments contaminated by polyaromatic hydrocarbons (PAHs) is a significant problem in the New York/New Jersey (NY/NJ) Harbor. 0.5 m3-scale slurry-phase bioreactors were used to determine whether bioaugmentation with a PAH-degradative bacterial consortium, or with the salt marsh grass S. alterniflora, could enhance the biodegradation of PAHs added to dredged estuarine sediments from the NY/NJ Harbor. The results were compared to biodegradation effected by the indigenous sediment microbial community. Sediments were diluted 1:1 in tap water and spiked to a final concentration of 20 mg/kg dry weight sediment of phenanthrene, anthracene, acenaphthene, fluorene, fluoranthene, and pyrene. The sediment slurry was then continuously sparged with air over 3 months. In all bioreactors a rapid reduction of greater than 95% of the initial phenanthrene, acenaphthene, and fluorene occurred within 14 days. Pyrene and fluoranthene reductions of 70 to 90% were achieved by day 77 of treatment. Anthracene was more recalcitrant and reductions ranged from 30 to 85%. Separate experiments showed that the sediment microbial communities mineralized 14C-pyrene and 14C-phenanthrene. PAH degradation, and the number of phenanthrene-degrading bacteria, were not enhanced by microbial or plant bioaugmentation. These data demonstrate that bioaugmentation is not required to effect efficient remediation of PAH-contaminated dredged sediments in slurry-phase bioreactors.  相似文献   

9.
A sediment bioassay is being developed using several marine benthic invertebrates to assess the effects of parental transfer of contaminants to the gametes. In this preliminary study, the emphasis was placed on developing methods for the in vitro fertilization of lugworm, Arenicola marina, oocytes.Lugworms exposed to contaminated sediments in outdoor mesocosms were brought to the laboratory, just before the beginning of the spawning period. The reliability of an in vitro fertilization procedure was tested by varying several parts of the method. Main results are that eggs and embryos may be physically damaged by cleaning over a sieve. However, as no negative effects were observed when leaving eggs and sperm together for 24 h, the sperm need not be washed off until the embryos are preserved for further examination later on.A first, incomplete screening of the effects of contaminated harbour dredged sediments indicated some effect on the reproductive success.  相似文献   

10.
THE RELATIVE ROLE OF EUKARYOTIC VERSUS PROKARYOTIC MICROORGANISMS IN PHENANTHRENE TRANSFORMATION WAS MEASURED IN SLURRIES OF COASTAL SEDIMENT BY TWO DIFFERENT APPROACHES: detection of marker metabolites and use of selective inhibitors on phenanthrene biotransformation. Phenanthrene biotransformation was measured by polar metabolite formation and CO(2) evolution from [9-C]phenanthrene. Radiolabeled metabolites were tentatively identified by high-performance liquid chromatography (HPLC) separation combined with UV/visible spectral analysis of HPLC peaks and comparison to authentic standards. Both yeasts and bacteria transformed phenanthrene in slurries of coastal sediment. Two products of phenanthrene oxidation by fungi, phenanthrene trans-3,4-dihydrodiol and 3-phenanthrol, were produced in yeast-inoculated sterile sediment. However, only products of phenanthrene oxidation typical of bacterial transformation, 1-hydroxy-2-naphthoic acid and phenanthrene cis-3,4-dihydrodiol, were isolated from slurries of coastal sediment with natural microbial populations. Phenanthrene trans-dihydrodiols or other products of fungal oxidation of phenanthrene were not detected in the slurry containing a natural microbial population. A predominant role for bacterial transformation of phenanthrene was also suggested from selective inhibitor experiments. Addition of streptomycin to slurries, at a concentration which suppressed bacterial viable counts and rates of [methyl-H]thymidine uptake, completely inhibited phenanthrene transformation. Treatment with colchicine, at a concentration which suppressed yeast viable counts, depressed phenanthrene transformation by 40%, and this was likely due to nontarget inhibition of bacterial activity. The relative contribution of eukaryotic microorganisms to phenanthrene transformation in inoculated sterile sediment was estimated to be less than 3% of the total activity. We conclude that the predominant degraders of phenanthrene in muddy coastal sediments are bacteria and not eukaryotic microorganisms.  相似文献   

11.
This study was performed to investigate the influence of short-chain aliphatic acids (SCAAs) on the desorption of phenanthrene from artificially contaminated soils with this polycyclic aromatic hydrocarbon. Five SCAAs examined, including acetic acid, oxalic acid, malic acid, tartaric acid and citric acid, were related to the increase of phenanthrene desorption from two kinds of soil. Citric acid and oxalic acid enhanced phenanthrene desorption to a more significant extent than other organic acids. The effects of pH, SCAA concentration, and ionic strength were further evaluated. The phenanthrene desorption was enhanced as the pH increased. An increase in desorbed phenanthrene from pH 3 to pH 8 was observed, but that was followed by a slight decrease above pH 8 for most SCAAs. The phenanthrene desorption performance showed increments with increasing organic acid concentrations. However, the increase of phenanthrene desorption became less remarkable when SCAA concentrations were above 100 mmol/L. Moreover the results suggested that high ionic strength hindered the desorption of phenanthrene in the presence of SCAAs.  相似文献   

12.
The functional response to and recovery from coal-coking waste effluent was evaluated for sediment microbial communities. Twenty estimates of microbial population density, biomass, and activity were measured five times during a 15-month period. Significant effects on microbial communities were observed in response to both wastewater contamination and diversion of the wastewater. Multivariate analysis of variance and discriminant analysis indicated that accurate differentiation between uncontaminated and contaminated sediments required a minimum of nine estimates of community response. Total viable population density, ATP, alkaline phosphatase, naphthalene, and phenanthrene mineralization rates were found to be highly weighted variables in site discrimination. Lipid and glucose mineralization, nitrogen fixation, and sediment protein also contributed significantly to explaining variation among sites. Estimates of anaerobic population densities and rates of methane production contributed little to discrimination among sites in the environment examined. In general, total viable population density, ATP, and alkaline phosphatase activity were significantly depressed in contaminated sediments. However, after removal of this contamination, the previously affected sites demonstrated greater temporal variability but a closer approximation of the mean response at the control site. Naphthalene and phenanthrene mineralization did not follow the general trend and were elevated at the contaminated sites throughout the investigation. Results of the investigation supported the hypothesis that multiple functional measures of microbial community response are required to evaluate the effect of and recovery from environmental contamination. In addition, when long-term effects are evaluated, select physiological traits, i.e., polyaromatic hydrocarbon mineralization, may not reflect population and biomass estimates of community response.  相似文献   

13.
While purified bacterial cells and DNA – the signature of life – from soil and sediment matrices have been extensively studied in a wide range of environments and in different microbial ecosystems, the paucity of data on DNA extraction from contaminated sediments emphasizes the need for further research on the isolation and quantification of bacterial cells and DNA in sediments. Consequently, the Nycondez gradient centrifugation method was applied to extract bacterial cells from contaminated and uncontaminated sediments. Quantitative estimates of recovered bacterial cells were obtained from direct counts performed using DAPI (4′,6′-diamino-2-phenylindole hypochloride) staining couples with fluorescence microscopy and indirect counts (colony-forming units). The estimation was improved by using an efficient method of comparing sediment types composed of quantifying bacterial densities in three steps: S1 the initial freshwater sediments; S2 the first supernatant recovered after mixing the sediments with sodium hexametaphosphate solution followed by centrifugation; and S3 the extracted cells. Total and extracellular DNA were extracted and quantified in each of the three steps. Additional analysis of faecal indicator bacteria (FIB) including E. coli and Enterococcus (ENT) was also performed in each step. The results display considerable variability in the quantity of bacteria cells depending on sediment type, ranging from 1.2 × 105 to 6.2 × 109 cell g?1 dry sediments. The treatment with sodium hexametaphosphate solution (2%) leads to the desorption of bacterial populations which were firmly adsorbed on contaminated sediment surfaces resulting in more than 90% of the FIB being recovered. The Nycondez density gradient centrifugation method makes it possible to extract bacterial cells from freshwater sediments without extracellular DNA so it is ideal for metagenomic analysis of bacteria.  相似文献   

14.
The effect of an oil spill on estuarine meiofauna was examined in a controlled colonization experiment. Forty-five replicate azoic sediment chambers treated with 0,133 or 381 mg hydrocarbons: 100 g dry sediment of South Louisiana crude oil were each quantitatively sampled with three replicate cores for colonizing meiofauna. Chambers were sampled on days 2, 5, 10, 30 and 60 postplacement in a Louisiana Spartina alterniflora (Loisel) salt marsh. Polychaetes showed a delayed colonization and reduced densities in oiled relative to non-oiled sediments. Nematode numbers were significantly depressed in the high oil treatment but no delay in colonization was identified. Only one species of meiobenthic copepods, Enhydrosoma woodini, displayed a reaction to the presence of the oil but only in the top centimeter of sediment. This species showed significantly decreased densities due to the heavily oiled treatment throughout the study until day 60 when numbers in the heavily oiled chambers were significantly higher than those in the non-oiled chambers. Species diversity (H') was calculated on the meiobenthic copepod assemblage and showed that diversity in the high oil treatment was generally lower than that in other treatments through day 30. Fewer species colonized the heavily oiled chambers before day 30. Principle Components Ordination conducted on the copepod assemblage could not identify an oil effect separate from a chamber effect for copepod community structure.  相似文献   

15.
The effect of varying salinity on phenanthrene and glutamate mineralization was examined in sediments along a natural salinity gradient in an urban tidal river. Mineralization was measured by trapping14CO2 from sediment slurries dosed with trace levels of [14C]phenanthrene or [14C]glutamate. Sediments from three sites representing three salinity regimes (0, 15, and 30%.) were mixed with filtered column water from each site. Ambient phenanthrene concentrations were also determined to calculate phenanthrene mineralization rates. Rates of phenanthrene mineralization related significantly to increasing salinity along the transect as determined by linear regression analysis. Rates ranged from 1 ng/hour/g dry sediment at the freshwater site to > 16 ng/hour/g dry sediment at the 30 salinity site. Glutamate mineralization also increased from the freshwater to the marine site; however, the relationship to salinity was not statistically significant.To examine the effect of salinity on mineralizing activities, individual sediments were mixed with filtered water of the other two sites. Slurries were also made with artificial seawater composed of 0, 15, or 30 g NaCl/ liter to substitute for overlying water. Rates of phenanthrene mineralization in the 0 ambient salinity sediments were not affected by higher salinity waters. Activities in the 15 and 30 ambient salinity sediments, however, were significantly inhibited by incubation with 0 salinity water. The inhibition, in large part, appears to be due to the decreased NaCl concentration of the water phase. Glutamate mineralization was affected in a similar manner, but not as dramatically as phenanthrene mineralization. The results suggest that phenanthrene degraders in low salinity estuarine sediments subject to salt water intrusion are tolerant to a wide range of salinities but phenanthrene degradation in brackish waters is mainly a function of obligate marine microorganisms.  相似文献   

16.
This experiment tested the effects of heavy metal contaminated sediment on emergence of chironomids. The number of adults emerging from test chambers containing an uncontaminated sediment and ones with sediment containing 1030 ppm cadmium (Cd), 17,300 ppm zinc (Zn), and 1640 ppm chromium (Cr) were observed for 14 days. It was found that emergence was reduced by over three times and delayed for two days in the heavy metal contaminated sediment.  相似文献   

17.
A microcosm experiment was designed to evaluate the effects of different levels of paint-derived tributyltin (TBT), and different modes of exposure, on the diversity, feeding mode and assemblage structure of estuarine nematodes. Estuarine meiofauna were exposed to two types of treatments (mixture and deposit), containing uncontaminated sediment and sediment spiked with paint-derived TBT at 1 and 10 mg kg−1 for a duration of 4 and 8 weeks. In the mixture treatments, meiofauna assemblages were incubated in clean and contaminated sediments. In the deposit treatments meiofauna assemblages were exposed to the deposition of clean and contaminated sediments simulating the disposal of TBT-contaminated dredged material at sea. Effects of TBT on nematode species are likely to occur by (a) the uptake of leached TBT from the sediment pore water through their permeable cuticle, resulting in decreased diversity and increased changes in assemblage structure with increasing levels of TBT contamination, and (b) direct ingestion of paint-particles with food, resulting in a significant decline of nonselective deposit feeders in contaminated sediments. The numbers of many species differed greatly between mixture and deposit treatments. Results from multivariate analyses showed an immediate and dominant effect of burial on most nematode species in the deposit treatments compared to the longer-term effect of TBT contamination. The survival rates of nematode species in the top layer of these sediments depended on their ability to withstand TBT contamination as well as their potential to migrate, survive and reproduce in the deposit. This study unambiguously showed that the response of nematode species depended not only on the level of TBT contamination but also on the duration and mode of exposure to contaminated sediment, which should be taken into account when assessing the effects of TBT on aquatic communities.  相似文献   

18.
Effects of metal contamination on microbial biomass in sediment samples from three areas in Palestine Lake (one area highly polluted with chromium, cadmium and zinc) were determined. Adenosine triphosphate (ATP) concentrations, determined by the luciferin-luciferase bioluminescent technique, and microbial colony numbers on pour plates were used as biomass indicators. Plate counts showed a significant (P < 0.01) site effect with the highly contaminated area having an order of magnitude lower microbial population than the control area. ATP concentrations also indicated lower microbial biomass in contaminated sediments. The metal concentrations of the most contaminated area averaged 17,840 µg Zn/g, 4380 µg Cr/g and 585 µg Cd/g based on dry weight of sediments. A suppression of organic decomposition was evident in the impacted area; high metal levels and resultant low microbial biomass may have been causative.  相似文献   

19.
This article was prepared prior to the author's employment by the U.S. Environmental Protection Agency and therefore does not necessarily represent agency policy. Sediments provide needed habitats to valued aquatic and marine resources and are therefore an integral and valuable component of any coastal ecosystem. Studies have found that multiple anthropogenic activities have been the primary cause of sediment contamination. There is continued evidence that contaminated sediments pose adverse impacts to biological resources even when overlying water quality is acceptable. Efforts in environmental protection should therefore incorporate sediment quality management strategies. Despite a growing awareness and interest in management of contaminated sediment, no established systematic and standardized national management program has been established in the U.S. The establishment of a national sediment policy in the U.S. would reinforce the importance of integrating sediment issues with different management objectives and reiterate the importance of protecting sediments as a natural resource. A national sediment policy could also guide and direct states in developing state sediment policies that reflect national objectives while integrating local concerns. This perspective identifies and defines issues and concerns raised by 13 states’ agency staff in managing contaminated sediments in the absence of a national policy. Recommendations are developed that address sociopolitical and scientific issues and concerns. The recommendations are integrated with stakeholder comments, state manager needs and the existing regulatory and institutional framework.  相似文献   

20.
There is a lack of scientifically justified approaches for assessing sediment ingestion rates of people exposed to contaminated sediments. Consequently, a method was developed to estimate sediment ingestion rates from: (1) hand-to-mouth contact with sediments and (2) incidental ingestion of surface water containing suspended sediments. In the case of hand-to-mouth contact, a mechanistic approach was used based on established principles and assumptions previously used for estimation of soil and dust ingestion rates. A key modification of the approach was to account for greater adherence of sediments to hands as compared to soil and dusts. For estimation of sediment ingestion from surface water contact, a method was developed that considered the unique aspects of suspended sediments. The analysis indicated that hand-to-mouth contact is the dominant pathway for ingestion of sediment. When people use aquatic areas for recreational purposes, the analysis has indicated that mean sediment ingestion rates may range from 18 to 72 mg/h for various receptor age groups. For sites where people spend more than 1 h per day on a consistent basis in direct contact with sediments, the results indicate that sediment ingestion rates may be greater than those typically assumed in Canadian human health risk assessment guidance for soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号