首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
周欣  李伟芸  王红艳 《遗传》2017,39(7):642-649
Hippo信号通路通过一系列激酶级联反应,实现对细胞增殖、器官大小以及组织再生等方面的调控。其中,MST1/2是核心激酶Hippo蛋白在哺乳动物中的同源物,对于下游信号通路的激活至关重要。此外,MST1/2在细胞分化、形态和细胞骨架重排等方面也发挥重要作用。近期多项研究工作指出,MST1/2参与调控免疫T细胞的粘附、迁移、归巢和抑制性Treg细胞的成熟与功能,以及心肌细胞自噬等过程。有趣的是,这一功能是不依赖经典的Hippo信号通路的,被称为“非经典Hippo信号通路”。最新的研究结果揭示了MST1/2通过非经典Hippo信号通路调控先天免疫巨噬细胞对病原菌或病毒的免疫应答,包括巨噬细胞的吞噬、细胞因子(炎症因子、趋化因子、Ⅰ型干扰素等)和线粒体活性氧的产生,从而在机体抵抗细菌病毒感染、炎症相关癌症、动脉粥样硬化等疾病中发挥重要功能。本文对MST1/2调控先天免疫功能、相关分子机制和疾病进行了总结和讨论。  相似文献   

2.
Department of Life Science, The University of Seoul, Seoul 130-743, Korea Balanced cell growth is crucial in animal development as well as tissue homeostasis. Concerted cross-regulation of multiple signaling pathways is essential for those purposes, and the dysregulation of signaling may lead to a variety of human diseases such as cancer. The time-honored Wnt/β-catenin and recently identified Hippo signaling pathways are evolutionarily conserved in both Drosophila and mammals, and are generally considered as having positive and negative roles in cell proliferation, respectively. While most mainstream regulators of the Wnt/β-catenin signaling pathway have been fairly well identified, the regulators of the Hippo pathway need to be more defined. The Hippo pathway controls organ size primarily by regulating cell contact inhibition. Recently, several crossregulations occurring between the Wnt/β-catenin and Hippo signaling pathways were determined through biochemical and genetic approaches. In the present mini-review, we mainly discuss the signal transduction mechanism of the Hippo signaling pathway, along with cross-talk between the regulators of the Wnt/β-catenin and Hippo signaling pathways. [BMB Reports 2014; 47(10): 540-545]  相似文献   

3.
4.
余淑娟  耿晶  陈兰芬 《遗传》2017,39(7):650-658
Hippo信号通路最初是在果蝇(Drosophila)中被发现的,是在进化上高度保守并能调控器官大小的信号转导通路。在哺乳动物多种组织器官中,Hippo信号通路的关键激酶MST1和MST2(果蝇Hippo激酶的同源分子)通过抑制下游的转录共激活分子YAP(果蝇中为Yorki)的活性来实现对细胞增殖和凋亡的调控。在这些组织器官中条件性敲除Mst1Mst2或过表达Yap大都会造成细胞过度增殖或肿瘤的发生。近年来,随着研究的不断深入,Hippo信号通路不依赖于YAP的非经典功能也逐渐被发现。其中,Hippo信号通路多个成员在免疫系统中的调控功能逐渐成为该领域的研究热点,特别是在免疫细胞发育分化、机体自身免疫性疾病及应对病毒和细菌入侵等过程中所发挥的调控作用。本文重点阐述了Hippo信号通路在T淋巴细胞中发育、分化、活化和迁移等方面及在部分天然免疫细胞抗感染过程中的功能和调控。  相似文献   

5.
6.
张平平  佟鑫  张天乐  黎子琛  龚清秋 《遗传》2017,39(7):568-575
植物器官大小如何决定是发育生物学的基本问题之一。Hippo信号通路是动物中最重要的负调控器官大小的信号通路。近期研究表明,植物中可能也存在Hippo信号通路。本文回顾了植物中已经发现的两个Hippo信号通路的核心蛋白——Ste20/Hippo同源蛋白SIK1与MOB1/Mats同源蛋白MOB1,着重论述了SIK1和MOB1在调控植物生长发育中的作用,并对未来建立一条完整的植物Hippo信号通路进行了展望。  相似文献   

7.
Genetic and biochemical studies have defined the Hippo pathway as a central mediator of developmental and pathogenic signals. By directing intracellular signaling events, the Hippo pathway fine-tunes cell proliferation, cell death, and cell-fate decisions, and coordinates these cues to specify animal organ size. Recent studies have revealed that Hippo pathway-mediated processes are interconnected with those of other key signaling cascades, such as those mediated by TGF-β and Wnt growth factors. Moreover, several reports have described a role for cell contact-mediated polarity proteins in Hippo pathway regulation. Emerging details suggest that crosstalk between these signals drives fundamental developmental processes, and deregulated intercellular communication influences disease progression, such as cancer. We review recent data with a focus on how the Hippo pathway integrates its activity with other signaling pathways.  相似文献   

8.
The tumor suppressor Merlin/NF2 functions upstream of the core Hippo pathway kinases Lats1/2 and Mst1/2, as well as the nuclear E3 ubiquitin ligase CRL4DCAF1. Numerous mutations of Merlin have been identified in Neurofibromatosis type 2 and other cancer patients. Despite more than two decades of research, the upstream regulator of Merlin in the Hippo pathway remains unknown. Here we show by high-resolution crystal structures that the Lats1/2-binding site on the Merlin FERM domain is physically blocked by Merlin''s auto-inhibitory tail. Angiomotin binding releases the auto-inhibition and promotes Merlin''s binding to Lats1/2. Phosphorylation of Ser518 outside the Merlin''s auto-inhibitory tail does not obviously alter Merlin''s conformation, but instead prevents angiomotin from binding and thus inhibits Hippo pathway kinase activation. Cancer-causing mutations clustered in the angiomotin-binding domain impair angiomotin-mediated Merlin activation. Our findings reveal that angiomotin and Merlin respectively interface cortical actin filaments and core kinases in Hippo signaling, and allow construction of a complete Hippo signaling pathway.  相似文献   

9.
已有研究表明,Hippo信号通路对干细胞的自我更新和分化至关重要,且Hippo信号通路在调控卵泡生长中起重要作用,然而,目前关于Hippo通路对卵巢生殖干细胞的增殖和分化以及卵巢功能重塑的影响相关的研究较少。为了明确Hippo信号通路效应因子YAP1与卵巢生殖干细胞体外增殖分化的关系,以及Hippo信号通路对卵巢癌的主要功能。我们采用两步法酶促分离和磁性分离技术分别鉴定卵巢生殖干细胞,通过测定MVH和OCT4标记物的表达,然后选择YAP1作为Hippo信号通路的主要效应分子,作为研究的靶基因。将含有过表达的YAP1或YAP1靶向的shRNA的慢病毒转导入卵巢生殖干细胞中。通过将过表达YAP1或YAP1 shRNA的慢病毒载体微量注射到不育小鼠模型中,观察调节Hippo信号通路对卵巢的增殖、分化和内分泌功能的影响。研究结果表明,在分离的卵巢生殖干细胞中观察到YAP1和MVH的共表达。与对照组相比,过表达YAP1的卵巢生殖干细胞中MVH和OCT4表达水平显著增加。而YAP1敲低后,MVH和OCT4水平显著降低;不育小鼠模型中YAP1过表达15 d后,E2和FSH含量显著升高,而YAP1 shRNA表达后,小鼠血清E2和FSH含量显著降低。YAP1可用于调控卵巢生殖干细胞的增殖和分化以及小鼠的卵巢功能。本研究表明,Hippo信号通路可能是调控卵巢功能重建的一个新的分子靶点。  相似文献   

10.
11.
BACKGROUND: The tight control of cell proliferation and cell death is essential to normal tissue development, and the loss of this control is a hallmark of cancers. Cell growth and cell death are coordinately regulated during development by the Hippo signaling pathway. The Hippo pathway consists of the Ste20 family kinase Hippo, the WW adaptor protein Salvador, and the NDR kinase Warts. Loss of Hippo signaling in Drosophila leads to enhanced cell proliferation and decreased apoptosis, resulting in massive tissue overgrowth through increased expression of targets such as Cyclin E and Diap1. The cytoskeletal proteins Merlin and Expanded colocalize at apical junctions and function redundantly upstream of Hippo. It is not clear how they regulate growth or how they are localized to apical junctions. RESULTS: We find that another Drosophila tumor-suppressor gene, the atypical cadherin fat, regulates both cell proliferation and cell death in developing imaginal discs. Loss of fat leads to increased Cyclin E and Diap1 expression, phenocopying loss of Hippo signaling. Ft can regulate Hippo phosphorylation, a measure of its activation, in tissue culture. Importantly, fat is needed for normal localization of Expanded at apical junctions in vivo. Genetic-epistasis experiments place fat with expanded in the Hippo pathway. CONCLUSIONS: Together, these data suggest that Fat functions as a cell-surface receptor for the Expanded branch of the conserved Hippo growth control pathway.  相似文献   

12.
Hippo pathway, originally discovered in Drosophila, is responsible for organ size control. The pathway is conserved in mammals and has a significant role in restraining cancer development. Regulating the Hippo pathway thus represents a potential therapeutic approach to treat cancer, which however requires deep understanding of the targeted pathway. Despite our limited knowledge on the pathway, there are increasing discoveries of new molecules that regulate and modulate the Hippo downstream signaling particularly in various solid malignancies, from extracellular stimuli or via pathway crosstalk. Herein, we discuss the roles of newly identified and key regulators that connect with core components (MST1/2, LATS1/2, SAV1, and MOB1) and downstream effector (YAP) in the Hippo pathway having an important role in cancer development and progression. Understanding of the mammalian Hippo pathway regulation may shed new insights to allow us selecting the right oncogenic targets and designing effective drugs for cancer treatments.  相似文献   

13.
Hippo signaling is known to maintain balance between cell proliferation and apoptosis via tight regulation of factors, such as metabolic cues, cell-cell contact, and mechanical cues. Cells directly recognize glucose, lipids, and other metabolic cues and integrate multiple signaling pathways, including Hippo signaling, to adjust their proliferation and apoptosis depending on nutrient conditions. Therefore, the dysregulation of the Hippo signaling pathway can promote tumor initiation and progression. Alteration in metabolic cues is considered a major factor affecting the risk of cancer formation and progression. It has recently been shown that the dysregulation of the Hippo signaling pathway, through diverse routes activated by metabolic cues, can lead to cancer with a poor prognosis. In addition, unique crosstalk between metabolic pathways and Hippo signaling pathways can inhibit the effect of anticancer drugs and promote drug resistance. In this review, we describe an integrated perspective of the relationship between the Hippo signaling pathway and metabolic signals in the context of cancer. We also characterize the mechanisms involved in changes in metabolism that are linked to the Hippo signaling pathway in the cancer microenvironment and propose several novel targets for anticancer drug treatment.  相似文献   

14.
Bone marrow-derived mesenchymal stem cells (BMSCs) are a suitable option for cell-based tissue engineering therapies due to their ability to renew and differentiate into multiple different tissue types, such as bone. Over the last decade, the effect of GNAS on the regulation of osteoblast differentiation has attracted great attention. Herein, this study aimed to explore the role of GNAS in osteogenic differentiation of MSCs. A total of 85 GNASf/f male mice were selected for animal experiments and 10 GNASf/f male mice for BMSC isolation to conduct cell experiments. The mice and BMSCs were treated with Verteporfin (a Hippo signaling pathway inhibitor) to inhibit the Hippo signaling pathway or recombinant adenovirus-expressing Cre to knockout the GNAS expression. Next, computed tomography scan, Von Kossa staining, and alizarin red staining were performed to detect osteogenic differentiation ability. Moreover, immunohistochemistry and alkaline phosphatase (ALP) staining were used to assess the expression of Oc and Osx in femur tissues and ALP activity. At last, the expression of GNAS, osteogenic markers, and factors related to the Hippo signaling pathway was evaluated. Initially, the results displayed successful knockout of the GNAS gene from mice and BMSCs. Moreover, the data indicated that GNAS knockout inhibits expression of Oc, Osx, ALP, BMP-2, and Runx2, and ALP activity. Additionally, GNAS knockout promotes activation of the Hippo signaling pathway, so as to repress osteogenic differentiation. Collectively, depleted GNAS exerts an inhibitory role in osteogenic differentiation of MSCs by activating Hippo signaling pathway, providing a candidate mediator for osteoporosis.  相似文献   

15.
16.
17.
The bantam microRNA is a target of the hippo tumor-suppressor pathway   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
The Hippo pathway has emerged as a conserved signaling pathway that is essential for the proper regulation of organ growth in Drosophila and vertebrates. Although the mechanisms of signal transduction of the core kinases Hippo/Mst and Warts/Lats are relatively well understood, less is known about the upstream inputs of the pathway and about the downstream cellular and developmental outputs. Here, we review recently discovered mechanisms that contribute to the dynamic regulation of Hippo signaling during Drosophila and vertebrate development. We also discuss the expanding diversity of Hippo signaling functions during development, discoveries that shed light on a complex regulatory system and provide exciting new insights into the elusive mechanisms that regulate organ growth and regeneration.  相似文献   

20.
The Hippo signaling pathway has emerged as a critical regulator for organ size control. The serine/threonine protein kinases Mst1 and Mst2, mammalian homologs of the Hippo kinase from Drosophila, play the central roles in the Hippo pathway controlling the cell proliferation, differentiation, and apoptosis during development. Mst1/2 can be activated by cellular stressors and the activation of Mst1/2 might enforce a feedback stimulation system to regulate oxidant levels through several mechanisms, in which regulation of cellular redox state might represent a tumor suppressor function of Mst1/2. As in Drosophila, murine Mst1/Mst2, in a redundant manner, negatively regulate the Yorkie ortholog YAP in multiple organs, although considerable diversification in the pathway composition and regulation is observed in some of them. Generally, loss of both Mst1 and Mst2 results in hyperproliferation and tumorigenesis that can be largely negated by the reduction or elimination of YAP. The Hippo pathway integrates with other signaling pathways e.g. Wnt and Notch pathways and coordinates with them to impact on the tumor pathogenesis and development. Furthermore, Mst1/2 kinases also act as an important regulator in immune cell activation, adhesion, migration, growth, and apoptosis. This review will focus on the recent updates on those aspects for the roles of Mst1/2 kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号