首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of polyamines in cytokinesis of mammalian cells   总被引:1,自引:0,他引:1  
Inhibition of polyamine biosynthesis in mammalian cells with methylglyoxal bis-(guanylhydrazone) and α-methyl ornithine inhibits cytokinesis and induces the formation of binucleate cells. Further, these binucleate cells exhibited a diffused pattern of microfilaments compared with the control cells as evidenced by indirect immunofluorescence using anti-actin antibodies. These effects can be reversed by increasing the intracellular levels of the polyamines. The results of this study suggest that polyamines may have a role in the process of cytokinesis and cell division.  相似文献   

2.
Septins comprise a eukaryotic guanine nucleotide binding protein subfamily which form filamentous heteropolymer complexes. Although mechanism of cytokinesis is diverged by species and tissues, loss of septin function results in the multinuclear phenotype in many organisms. Hence septin filaments beneath the cleavage furrow are hypothesized as a structural basis to ensure completion of cytokinesis. However, molecular mechanisms of septin assembly, disassembly and function have been elusive despite the potential importance of this ubiquitous cytoskeletal system. Meanwhile, growing evidence suggests that mammalian septins functionally or physically interact with diverse molecules such as actin, actin-binding proteins, proteins of membrane fusion machinery, Cdc42 adapter proteins, a ubiquitin-protein ligase, and phosphoinositides. Careful integration of these data may provide insights into the mechanism of mammalian septin organization and functions in cytokinesis.  相似文献   

3.

Background  

In cytokinesis, when the cleavage furrow has been formed, the two centrioles in each daughter cell separate. It has been suggested that the centrioles facilitate and regulate cytokinesis to some extent. It has been postulated that termination of cytokinesis (abscission) depends on the migration of a centriole to the intercellular bridge and then back to the cell center. To investigate the involvement of centrioles in cytokinesis, we monitored the movements of centrioles in three mammalian epithelial cell lines, HeLa, MCF 10A, and the p53-deficient mouse mammary tumor cell line KP-7.7, by time-lapse imaging. Centrin1-EGFP and α-Tubulin-mCherry were co-expressed in the cells to visualize respectively the centrioles and microtubules.  相似文献   

4.
5.
BACKGROUND: Cell division or cytokinesis, which results from a series of events starting in metaphase, is the mechanism by which the mother cell cytoplasm is divided between the two daughter cells. Hence it is the final step of the cell division cycle. The aim of the present study was to demonstrate that mammalian cells undergoing cytokinesis can be sorted selectively by flow cytometry. MATERIALS AND METHODS: Cultures of HeLa cells were arrested in prometaphase by nocodazole, collected by mitotic shake-off and released for 90 min into fresh medium to enrich for cells undergoing cytokinesis. After ethanol fixation and DNA staining, cells were sorted based on DNA content and DNA fluorescence signal height. RESULTS: We define a cell population that transiently accumulates when synchronized cells exit mitosis before their entry into G1. We show that this population is highly enriched in cells undergoing cytokinesis. In addition, this population of cells can be sorted and analyzed by immunofluorescence and western blotting. CONCLUSIONS: This method of cell synchronization and sorting provides a simple means to isolate and biochemically analyze cells in cytokinesis, a period of the cell cycle that has been difficult to study by cell fractionation.  相似文献   

6.
The final stages in mammalian cytokinesis are poorly understood. Previously, we reported that the ADP-ribosyltransferase activity of Pseudomonas aeruginosa type III secreted toxin ExoT inhibits late stages of cytokinesis. Given that Crk adaptor proteins are the major substrates of ExoT ADP-ribosyltransferase activity, we tested the involvement of Crk in cytokinesis. We report that the focal adhesion-associated proteins, Crk and paxillin are essential for completion of cytokinesis. When their function is absent, the cytoplasmic bridge fails to resolve and the daughter cells fuse to form a binucleated cell. During cytokinesis, Crk is required for syntaxin-2 recruitment to the midbody, while paxillin is required for both Crk and syntaxin-2 localization to this compartment. Our data demonstrate that the subcellular localization and the activity of RhoA and citron K, which are essential for early stages of cytokinesis, are not dependent on paxillin, Crk, or syntaxin-2. These studies reveal a novel role for Crk and paxillin in cytokinesis and suggest that focal adhesion complex, as a unit, may partake in this fundamental cellular process.  相似文献   

7.
Myosin II-dependent contraction of the contractile ring drives equatorial furrowing during cytokinesis in animal cells. Nonetheless, myosin II-null cells of the cellular slime mold Dictyostelium divide efficiently when adhering to substrates by making use of polar traction forces. Here, we show that in the presence of 30 microM blebbistatin, a potent myosin II inhibitor, normal rat kidney (NRK) cells adhering to fibronectin-coated surfaces formed equatorial furrows and divided in a manner strikingly similar to myosin II-null Dictyostelium cells. Such blebbistatin-resistant cytokinesis was absent in partially detached NRK cells and was disrupted in adherent cells if the advance of their polar lamellipodia was disturbed by neighboring cells. Y-27632 (40 microM), which inhibits Rho-kinase, was similar to 30 microM blebbistatin in that it inhibited cytokinesis of partially detached NRK cells but only prolonged furrow ingression in attached cells. In the presence of 100 microM blebbistatin, most NRK cells that initiated anaphase formed tight furrows, although scission never occurred. Adherent HT1080 fibrosarcoma cells also formed equatorial furrows efficiently in the presence of 100 microM blebbistatin. These results provide direct evidence for adhesion-dependent, contractile ring-independent equatorial furrowing in mammalian cells and demonstrate the importance of substrate adhesion for cytokinesis.  相似文献   

8.
9.
In this study we investigated the cellular distribution of talin, a cytoskeletal protein, during mammalian cell cytokinesis. Immunohistochemical experiments on various carcinoma cell lines and mesenchyme-derived cells reveal that talin displays a cell cycle-dependent cellular localization. During metaphase, talin is located in the centromeric region of the chromosome, like the TD-60 protein and intrinsic centromere components detected by a CREST serum. From anaphase to telophase, talin is present in the cleavage furrow. As the cells progress to cytokinesis, when the furrow is complete, talin is concentrated in the midbody structures, as assessed by immunofluorescence and confirmed by Western blot experiments on purified midbodies. Double staining experiments reveal that alpha-tubulin, TD-60 protein, and talin co-localize in the midbodies. These results suggest that talin, in addition to its implication in focal adhesion organization and signaling, may play a critical role in cytokinesis. (J Histochem Cytochem 47:1357-1367, 1999)  相似文献   

10.
Mitosis is a highly coordinated process that assures the fidelity of chromosome segregation. Errors in this process result in aneuploidy which can lead to cell death or oncogenesis. In this paper we describe a putative mammalian protein kinase, AIM-1 (Aurora and Ipl1-like midbody-associated protein), related to Drosophila Aurora and Saccharomyces cerevisiae Ipl1, both of which are required for chromosome segregation. AIM-1 message and protein accumulate at G2/M phase. The protein localizes at the equator of central spindles during late anaphase and at the midbody during telophase and cytokinesis. Overexpression of kinase-inactive AIM-1 disrupts cleavage furrow formation without affecting nuclear division. Furthermore, cytokinesis frequently fails, resulting in cell polyploidy and subsequent cell death. These results strongly suggest that AIM-1 is required for proper progression of cytokinesis in mammalian cells.  相似文献   

11.
PtK1 cells lysed late in cell division in a medium containing the nonionic detergent Brij 58 and polyethylene glycol with continue to undergo cleavage after lysis. Maintenance of cleavage after lysis is dependent on the composition of the lysis medium; the pH must be around neutrality, MgATP must be present, and the free Ca++ concentration should be 1 microM for optimal constriction to occur. Cleavage can be stopped and reinitiated by raising and lowering the Ca++ levels in the lysis medium. Cleavage in the permeabilized cell is blocked by addition of phalloidin, cytochalasin B, and N-ethylmaleimide-modified myosin subfragment-1 to the lysis medium. This represents the first cell model system for studying cleavage since the pioneering studies of Hoffman- Berling in 1954.  相似文献   

12.
Calcium and phosphoinositide signaling regulate cell division in model systems, but their significance in mammalian cells is unclear. Calcium-binding protein-7 (CaBP7) is a phosphatidylinositol 4-kinaseIIIβ (PI4KIIIβ) inhibitor required during cytokinesis in mammalian cells, hinting at a link between these pathways. Here we characterize a novel association of CaBP7 with lysosomes that cluster at the intercellular bridge during cytokinesis in HeLa cells. We show that CaBP7 regulates lysosome clustering and that PI4KIIIβ is essential for normal cytokinesis. CaBP7 depletion induces lysosome mislocalization, extension of intercellular bridge lifetime, and cytokinesis failure. These data connect phosphoinositide and calcium pathways to lysosome localization and normal cytokinesis in mammalian cells.  相似文献   

13.
Energy- and nutrient-sensing proteins such as AMPK, mTOR and S6K1 are now recognized as novel regulators of mitotic completion in proliferating cells. We investigated the cellular distribution of the Ser2481 autophosphorylation of mTOR, which directly monitors mTORC-specific catalytic activity, during mammalian cell mitosis and cytokinesis. Automated immunofluorescence experiments in human carcinoma cell lines revealed that phospho-mTORSer2481 exhibited profound spatial and temporal dynamics during cell division. Phospho-mTORSer2481 was strikingly enriched in mitotic cells, and in prophase, bright phospho-mTORSer2481 staining could be clearly observed among condensed chromosomes. Phospho-mTORSer2481 then redistributes from diffuse cytosolic staining that partially colocalizes with the mitotic spindle during the early phases of mitosis to the furrow at the onset of cytokinesis. Like the bona fide chromosomal passenger proteins (CPPs) INCENP and Aurora B, phospho-mTORSer2481 displayed noteworthy accumulation in the central spindle midzone and the midbody regions, which persisted during the furrowing process. Accordingly, double-staining experiments confirmed that phospho-mTORSer2481 largely colocalized with CCPs in the midbodies. The CPP-like mitotic localization of phospho-mTORSer2481 was fully prevented by the microtubule-depolymerizing drug nocodazole; mitotic traveling of phospho-mTORSer2481 to the midbody during telophase and cytokinesis, where it appears to be integrated into the CPP-driven cytokinetic machinery, may therefore require dynamic microtubules. Although the Ser2448-phosphorylated form of mTOR was also found at high levels during M-phase in human cancer cells, we failed to observe a significant association of phospho-mTORSer2448 with CCP-positive mitotic and cytokinetic structures. Our findings add phospho-mTORSer2481 to the growing list of phospho-active forms of proteins belonging to the AMPK/mTOR/S6K1 signaling axis that reside at the mitotic and cytokinetic apparatus. Future studies should elucidate how the specific ability of phospho-mTORSer2481 to spatially and temporally couple to the cleavage furrow and midbody region as a CPP-like protein can signal to or from adjacent signaling complexes and/or with the basic machinery of cell abscission.  相似文献   

14.
Energy- and nutrient-sensing proteins such as AMPK, mTOR and S6K1 are now recognized as novel regulators of mitotic completion in proliferating cells. We investigated the cellular distribution of the Ser2481 autophosphorylation of mTOR, which directly monitors mTORC-specific catalytic activity, during mammalian cell mitosis and cytokinesis. Automated immunofluorescence experiments in human carcinoma cell lines revealed that phospho-mTORSer2481 exhibited profound spatial and temporal dynamics during cell division. Phospho-mTORSer2481 was strikingly enriched in mitotic cells, and in prophase, bright phospho-mTORSer2481 staining could be clearly observed among condensed chromosomes. Phospho-mTORSer2481 then redistributes from diffuse cytosolic staining that partially colocalizes with the mitotic spindle during the early phases of mitosis to the furrow at the onset of cytokinesis. Like the bona fide chromosomal passenger proteins (CPPs) INCENP and Aurora B, phospho-mTORSer2481 displayed noteworthy accumulation in the central spindle midzone and the midbody regions, which persisted during the furrowing process. Accordingly, double-staining experiments confirmed that phospho-mTORSer2481 largely colocalized with CCPs in the midbodies. The CPP-like mitotic localization of phospho-mTORSer2481 was fully prevented by the microtubule-depolymerizing drug nocodazole; mitotic traveling of phospho-mTORSer2481 to the midbody during telophase and cytokinesis, where it appears to be integrated into the CPP-driven cytokinetic machinery, may therefore require dynamic microtubules. Although the Ser2448-phosphorylated form of mTOR was also found at high levels during M-phase in human cancer cells, we failed to observe a significant association of phospho-mTORSer2448 with CCP-positive mitotic and cytokinetic structures. Our findings add phospho-mTORSer2481 to the growing list of phospho-active forms of proteins belonging to the AMPK/mTOR/S6K1 signaling axis that reside at the mitotic and cytokinetic apparatus. Future studies should elucidate how the specific ability of phospho-mTORSer2481 to spatially and temporally couple to the cleavage furrow and midbody region as a CPP-like protein can signal to or from adjacent signaling complexes and/or with the basic machinery of cell abscission.  相似文献   

15.
The terminal step of cytokinesis in animal cells is the abscission of the midbody, a cytoplasmic bridge that connects the two prospective daughter cells. Here we show that two members of the SNARE membrane fusion machinery, syntaxin 2 and endobrevin/VAMP-8, specifically localize to the midbody during cytokinesis in mammalian cells. Inhibition of their function by overexpression of nonmembrane-anchored mutants causes failure of cytokinesis leading to the formation of binucleated cells. Time-lapse microscopy shows that only midbody abscission but not further upstream events, such as furrowing, are affected. These results indicate that successful completion of cytokinesis requires a SNARE-mediated membrane fusion event and that this requirement is distinct from exocytic events that may be involved in prior ingression of the plasma membrane.  相似文献   

16.
Membrane trafficking during cytokinesis is not well understood. We used advanced live cell imaging techniques to track exocytosis of single vesicles to determine whether constitutively exocytosed membrane is focally delivered to the cleavage furrow. Ultrasensitive three-dimensional confocal time-lapse imaging of the temperature-sensitive membrane cargo protein vesicular stomatitis virus protein-yellow fluorescent protein revealed that vesicles from both daughter cells traffic out of the Golgi and into the furrow, following curvilinear paths. Immunolocalization and photobleaching experiments indicate that individual vesicles accumulate at the midbody and generate a reserve vesicle pool that is distinct from endosomal and lysosomal compartments. Total internal reflection fluorescence microscopy imaging provided direct evidence that Golgi-derived vesicles from both daughter cells not only traffic to the furrow region but dock and fuse there, supporting a symmetrically polarized exocytic delivery model. In contrast, quantitative analysis of midbody abscission showed inheritance of the midbody remnant by one daughter cell, indicating that cytokinesis is composed of both symmetrical and asymmetrical stages.  相似文献   

17.
Cytokinesis in animal cells involves the contraction of an actomyosin ring formed at the cleavage furrow. Nuclear division, or karyokinesis, must be precisely timed to occur before cytokinesis in order to prevent genetic anomalies that would result in either cell death or uncontrolled cell division. The septin family of GTPase proteins has been shown to be important for cytokinesis although little is known about their role during this process. Here we investigate the distribution and function of the mammalian septin MSF. We show that during interphase, MSF colocalizes with actin, microtubules, and another mammalian septin, Nedd5, and coprecipitates with six septin proteins. In addition, transfections of various MSF isoforms reveal that MSF-A specifically localizes with microtubules and that this localization is disrupted by nocodazole treatment. Furthermore, MSF isoforms localize primarily with tubulin at the central spindle during mitosis, whereas Nedd5 is mainly associated with actin. Microinjection of affinity-purified anti-MSF antibodies into synchronized cells, or depletion of MSF by small interfering RNAs, results in the accumulation of binucleated cells and in cells that have arrested during cytokinesis. These results reveal that MSF is required for the completion of cytokinesis and suggest a role that is distinct from that of Nedd5.  相似文献   

18.
Cytosolic division in mitotic cells involves the function of a number of cytoskeletal proteins, whose coordination in the spatio-temporal control of cytokinesis is poorly defined. We studied the role of p85/p110 phosphoinositide kinase (PI3K) in mammalian cytokinesis. Deletion of the p85alpha regulatory subunit induced cell accumulation in telophase and appearance of binucleated cells, whereas inhibition of PI3K activity did not affect cytokinesis. Moreover, reconstitution of p85alpha-deficient cells with a Deltap85alpha mutant, which does not bind the catalytic subunit, corrected the cytokinesis defects of p85alpha(-/-) cells. We analyzed the mechanism by which p85alpha regulates cytokinesis; p85alpha deletion reduced Cdc42 activation in the cleavage furrow and septin 2 accumulation at this site. As Cdc42 deletion also triggered septin 2 and cytokinesis defects, a mechanism by which p85 controls cytokinesis is by regulating the local activation of Cdc42 in the cleavage furrow and in turn septin 2 localization. We show that p85 acts as a scaffold to bind Cdc42 and septin 2 simultaneously. p85 is thus involved in the spatial control of cytosolic division through regulation of Cdc42 and septin 2, in a PI3K-activity independent manner.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号