首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The role of Dicer protein partners in the processing of microRNA precursors   总被引:1,自引:0,他引:1  
One of the cellular functions of the ribonuclease Dicer is to process microRNA precursors (pre-miRNAs) into mature microRNAs (miRNAs). Human Dicer performs this function in cooperation with its protein partners, AGO2, PACT and TRBP. The exact role of these accessory proteins in Dicer activity is still poorly understood. In this study, we used the northern blotting technique to investigate pre-miRNA cleavage efficiency and specificity after depletion of AGO2, PACT and TRBP by RNAi. The results showed that the inhibition of either Dicer protein partner substantially affected not only miRNA levels but also pre-miRNA levels, and it had a rather minor effect on the specificity of Dicer cleavage. The analysis of the Dicer cleavage products generated in vitro revealed the presence of a cleavage intermediate when pre-miRNA was processed by recombinant Dicer alone. This intermediate was not observed during pre-miRNA cleavage by endogenous Dicer. We demonstrate that AGO2, PACT and TRBP were required for the efficient functioning of Dicer in cells, and we suggest that one of the roles of these proteins is to assure better synchronization of cleavages triggered by two RNase III domains of Dicer.  相似文献   

3.
Dicer is a RNAase III enzyme that cleaves double stranded RNA and generates small interfering RNA (siRNA) and microRNA (miRNA). The goal of this study is to examine the role of Dicer and miRNAs in vascular smooth muscle cells (VSMCs). We deleted Dicer in VSMCs of mice, which caused a developmental delay that manifested as early as embryonic day E12.5, leading to embryonic death between E14.5 and E15.5 due to extensive hemorrhage in the liver, brain, and skin. Dicer KO embryos showed dilated blood vessels and a disarray of vascular architecture between E14.5 and E15.5. VSMC proliferation was significantly inhibited in Dicer KOs. The expression of VSMC marker genes were significantly downregulated in Dicer cKO embryos. The vascular structure of the yolk sac and embryo in Dicer KOs was lost to an extent that no blood vessels could be identified after E15.5. Expression of most miRNAs examined was compromised in VSMCs of Dicer KO. Our results indicate that Dicer is required for vascular development and regulates vascular remodeling by modulating VSMC proliferation and differentiation.  相似文献   

4.
Osteoclasts are unique cells that resorb bone, and are involved in not only bone remodeling but also pathological bone loss such as osteoporosis and rheumatoid arthritis. The regulation of osteoclasts is based on a number of molecules but full details of these molecules have not yet been understood. MicroRNAs are produced by Dicer cleavage an emerging regulatory system for cell and tissue function. Here, we examine the effects of Dicer deficiency in osteoclasts on osteoclastic activity and bone mass in vivo. We specifically knocked out Dicer in osteoclasts by crossing Dicer flox mice with cathepsin K‐Cre knock‐in mice. Dicer deficiency in osteoclasts decreased the number of osteoclasts (N.Oc/BS) and osteoclast surface (Oc.S/BS) in vivo. Intrinsically, Dicer deficiency in osteoclasts suppressed the levels of TRAP positive multinucleated cell development in culture and also reduced NFATc1 and TRAP gene expression. MicroRNA analysis indicated that expression of miR‐155 was suppressed by RANKL treatment in Dicer deficient cells. Dicer deficiency in osteoclasts suppressed osteoblastic activity in vivo including mineral apposition rate (MAR) and bone formation rate (BFR) and also suppressed expression of genes encoding type I collagen, osteocalcin, Runx2, and Efnb2 in vivo. Dicer deficiency in osteoclasts increased the levels of bone mass indicating that the Dicer deficiency‐induced osteoclastic suppression was dominant over Dicer deficiency‐induced osteoblastic suppression. On the other hand, conditional Dicer deletion in osteoblasts by using 2.3 kb type I collagen‐Cre did not affect bone mass. These results indicate that Dicer in osteoclasts controls activity of bone resorption in vivo. J. Cell. Biochem. 109: 866–875, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
PAZ PIWI domain (PPD) proteins, together with the RNA cleavage products of Dicer, form ribonucleoprotein complexes called RNA-induced silencing complexes (RISCs). RISCs mediate gene silencing through targeted messenger RNA cleavage and translational suppression. The PAZ domains of PPD and Dicer proteins were originally thought to mediate binding between PPD proteins and Dicer, although no evidence exists to support this theory. Here we show that PAZ domains are not required for PPD protein–Dicer interactions. Rather, a subregion of the PIWI domain in PPD proteins, the PIWI-box, binds directly to the Dicer RNase III domain. Stable binding between PPD proteins and Dicer was dependent on the activity of Hsp90. Unexpectedly, binding of PPD proteins to Dicer inhibits the RNase activity of this enzyme in vitro. Lastly, we show that PPD proteins and Dicer are present in soluble and membrane-associated fractions, indicating that interactions between these two types of proteins may occur in multiple compartments.  相似文献   

6.
Dicer cleaves double-stranded RNAs (dsRNAs) or precursor microRNAs (pre-miRNAs) to yield ∼22-nt RNA duplexes. The pre-miRNA structure requirement for human Dicer activity is incompletely understood. By large-scale in vitro dicing assays and mutagenesis studies, we showed that human Dicer cleaves most, although not all, of the 161 tested human pre-miRNAs efficiently. The stable association of RNAs with Dicer, as examined by gel shift assays, appears important but is not sufficient for cleavage. Human Dicer tolerates remarkable structural variation in its pre-miRNA substrates, although the dsRNA feature in the stem region and the 2-nt 3′-overhang structure in a pre-miRNA contribute to its binding and cleavage by Dicer, and a large terminal loop further enhances pre-miRNA cleavage. Dicer binding protects the terminal loop from digestion by S1 nuclease, suggesting that Dicer interacts directly with the terminal loop region.  相似文献   

7.
Dicer is a specialized nuclease that produces RNA molecules of specific lengths for use in gene silencing pathways. Dicer relies on the correct measurement of RNA target duplexes to generate products of specific lengths. It is thought that Dicer uses its multidomain architecture to calibrate RNA product length. However, this measurement model is derived from structural information from a protozoan Dicer, and does not account for the helicase domain present in higher organisms. The Caenorhabditis elegans Dicer-related helicase 3 (DRH-3) is an ortholog of the Dicer and RIG-I family of double-strand RNA activated ATPases essential for secondary siRNA production. We find that DRH-3 specifies 22 bp RNAs by dimerization of the helicase domain, a process mediated by ATPase activity and the N-terminal domain. This mechanism for RNA length discrimination by a Dicer family protein suggests an alternative model for RNA length measurement by Dicer, with implications for recognition of siRNA and miRNA targets.  相似文献   

8.
In vitro binding of single-stranded RNA by human Dicer   总被引:2,自引:0,他引:2  
Kini HK  Walton SP 《FEBS letters》2007,581(29):5611-5616
While Dicer alone has been shown to form stable complexes with double-stranded RNAs and short interfering RNAs, its interactions with single-stranded RNAs (ssRNAs) have not been characterized. Here, we show that recombinant human Dicer alone can bind 21-nt ssRNAs in vitro, independent of their sequence and structure. We also demonstrate that Dicer binds ssRNAs having a 5'-phosphate with greater affinity versus those with a 5'-hydroxyl. In addition, 3'-biotinylated ssRNAs are bound by Dicer with lower affinity than 3'-hydroxyl ssRNAs. The stability of ssRNA-Dicer complexes was found to depend on divalent cations. Together, our results suggest a role for the PAZ domain of Dicer in binding ssRNAs and may indicate roles for Dicer in cellular function beyond those currently known.  相似文献   

9.
10.
Despite the increasing interest in other classes of small RNAs, microRNAs (miRNAs) remain the most widely investigated and have been shown to play a role in a number of different processes in mammals. Many studies investigating miRNA function focus on the processing enzyme Dicer1, which is an RNAseIII protein essential for the biogenesis of active miRNAs through its cleavage of precursor RNA molecules. General deletion of Dicer1 in the mouse confirms that miRNAs are essential for development because embryos lacking Dicer1 fail to reach the end of gastrulation. Here we investigate the role of Dicer1 in urogenital tract development. We utilised a conditional allele of the Dicer1 gene and two Cre-expressing lines, driven by HoxB7 and Amhr2, to investigate the effect of Dicer1 deletion on both male and female reproductive tract development. Data presented here highlight an essential role for Dicer1 in the correct morphogenesis and function of the female reproductive tract and confirm recent findings that suggest Dicer1 is required for female fertility. In addition, HoxB7:Cre-mediated deletion in ureteric bud derivatives leads to a spectrum of anomalies in both males and females, including hydronephrotic kidneys and kidney parenchymal cysts. Male reproductive tract development, however, remains largely unaffected in the absence of Dicer1. Thus, Dicer1 is required for development of the female reproductive tract and also normal kidney morphogenesis.  相似文献   

11.
12.
13.
14.
Dicer is a key player in microRNA (miRNA) and RNA interference (RNAi) pathways, processing miRNA precursors and double-stranded RNA into ∼21-nt-long products ultimately triggering sequence-dependent gene silencing. Although processing of substrates in vertebrate cells occurs in the cytoplasm, there is growing evidence suggesting Dicer is also present and functional in the nucleus. To address this possibility, we searched for a nuclear localization signal (NLS) in human Dicer and identified its C-terminal double-stranded RNA binding domain (dsRBD) as harboring NLS activity. We show that the dsRBD-NLS can mediate nuclear import of a reporter protein via interaction with importins β, 7, and 8. In the context of full-length Dicer, the dsRBD-NLS is masked. However, duplication of the dsRBD localizes the full-length protein to the nucleus. Furthermore, deletion of the N-terminal helicase domain results in partial accumulation of Dicer in the nucleus upon leptomycin B treatment, indicating that CRM1 contributes to nuclear export of Dicer. Finally, we demonstrate that human Dicer has the ability to shuttle between the nucleus and the cytoplasm. We conclude that Dicer is a shuttling protein whose steady-state localization is cytoplasmic.  相似文献   

15.
Dicer is the key component in the miRNA pathway. Degradation of Dicer protein is facilitated during vaccinia virus (VV) infection. A C-terminal cleaved product of Dicer protein was detected in the presence of MG132 during VV infection. Thus, it is possible that Dicer protein is cleaved by a viral protease followed by proteasome degradation of the cleaved product. There is a potential I7 protease cleavage site in the C-terminus of Dicer protein. Indeed, reduction of Dicer protein was detected when Dicer was co-expressed with I7 protease but not with an I7 protease mutant protein lack of the protease activity. Mutation of the potential I7 cleavage site in the C-terminus of Dicer protein resisted its degradation during VV infection. Furthermore, Dicer protein was reduced dramatically by recombinant VV vI7Li after the induction of I7 protease. If VV could facilitate the degradation of Dicer protein, the process of miRNA should be affected by VV infection. Indeed, accumulation of precursor miR122 was detected after VV infection or I7 protease expression. Reduction of miR122 would result in the suppression of HCV sub-genomic RNA replication, and, in turn, the amount of viral proteins. As expected, significant reduction of HCVNS5A protein was detected after VV infection and I7 protease expression. Therefore, our results suggest that VV could cleave Dicer protein through I7 protease to facilitate Dicer degradation, and in turn, suppress the processing of miRNAs. Effect of Dicer protein on VV replication was also studied. Exogenous expression of Dicer protein suppresses VV replication slightly while knockdown of Dicer protein does not affect VV replication significantly.  相似文献   

16.
符梅  徐克惠  许文明 《遗传》2016,38(7):612-622
Dicer是微小非编码RNA生成的关键内切酶,介导微小RNA(micro RNA,miRNA)和小干扰RNA(small interfering RNA,siRNA)的产生,通过RNA干扰(RNA interference,RNAi)途径实现转录或转录后水平基因调控,在调节细胞增殖、分化、凋亡等方面起重要作用。近年来Dicer基因在生殖领域的研究越来越受关注,最近的研究表明Dicer与男性生精细胞发育、精子形成及成熟、精子活力和形态生成、卵泡发育、排卵及黄体形成、性激素合成、输卵管功能、子宫内膜容受性等方面都有密切关系。繁衍后代需要精子和卵子的共同参与,Dicer可能通过影响精子和卵子的数量或者质量进而导致胚胎发育异常,因此理解Dicer在雄性与雌性生殖的重要调节作用对于理解生殖调节异常相关的疾病如无精子症、复发性流产等的发病机制具有重要的作用。本文对Dicer在雄性生殖道与雌性生殖中的关键作用进行了综述,旨在进一步从分子层面深入理解Dicer与生殖相关疾病的关系。  相似文献   

17.
YF Ren  G Li  J Wu  YF Xue  YJ Song  L Lv  XJ Zhang  KF Tang 《PloS one》2012,7(7):e40705
It has been reported that decreased Dicer expression leads to Alu RNAs accumulation in human retinal pigmented epithelium cells, and Dicer may process the endogenous SINE/B1 RNAs (the rodent equivalent of the primate Alu RNAs) into small interfering RNAs (siRNAs). In this study, we aimed to address whether Dicer can process Alu RNAs and their common ancestor, 7SL RNA. Using Solexa sequencing technology, we showed that Alu-derived small RNAs accounted for 0.6% of the total cellular small RNAs in HepG2.2.15 cells, and the abundance decreased when Dicer was knocked down. However, Alu-derived small RNAs showed different characteristics from miRNAs and siRNAs, the classic Dicer-processed products. Interestingly, we found that small RNAs derived from 7SL RNA accounted for 3.1% of the total cellular small RNAs in the control cells, and the abundance dropped about 3.4 folds in Dicer knockdown cells. Dicer-dependent biogenesis of 7SL RNA-derived small RNAs was validated by northern blotting. In vitro cleavage assay using the recombinant human Dicer protein also showed that synthetic 7SL RNA was processed by Dicer into fragments of different lengths. Further functional analysis suggested that 7SL RNA-derived small RNAs do not function like miRNAs, neither do they regulate the expression of 7SL RNA. In conclusion, the current study demonstrated that Dicer can process 7SL RNA, however, the biological significance remains to be elucidated.  相似文献   

18.
目的:在小鼠海马中特异性敲除RNA酶Ⅲ酶(RNAase Ⅲenzyme)Dicer1,并初步观察Dicer1在小鼠海马的生长发育中起到的基本作用。方法:用在海马中特异性表达Cre酶的Frizzled9-CreERTM小鼠和Dicer1(flox/flox)小鼠交配,得到Dicer1(flox/+);Frizzled9-CreERTM小鼠,并再次与Dicer1(flox/flox)交配,得到Dicer1(flox/flox);Frizzled9-CreERTM小鼠,用他莫昔芬(TM)诱导Cre酶的表达,使Dicer1在海马中特异性敲除,观察小鼠的表型。结果:TM诱导的Dicer1全敲的小鼠出生率低,大部分在出生后40天左右死亡,海马中CA3区域变薄,猜测与海马中缺乏Dicer1酶有关。结论:Dicer1是miRNA产生过程中的重要因素,在海马中敲除Dicer1后影响小鼠发育,小鼠易猝死。  相似文献   

19.
Dicer1, an essential component of RNA interference and the microRNA pathway, has many important roles in the morphogenesis of developing tissues. Dicer1 null mice have been reported to die at E7.5; therefore it is impossible to study its function in adult tissues. We previously reported that Dicer1-hypomorphic mice, whose Dicer1 expression was reduced to 20% in all tissues, were unexpectedly viable. Here we analyzed these mice to ascertain whether the down-regulation of Dicer1 expression has any influence on adult tissues. Interestingly, all tissues of adult (8–10 week old) Dicer1-hypomorphic mice were histologically normal except for the pancreas, whose development was normal at the fetal and neonatal stages; however, morphologic abnormalities in Dicer1-hypomorphic mice were detected after 4 weeks of age. This suggested that Dicer1 is important for maintaining the adult pancreas.  相似文献   

20.
Ribonuclease activity and RNA binding of recombinant human Dicer   总被引:44,自引:0,他引:44  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号