首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
—Gangliosides and allied neutral glycosylceramides were isolated from human infant (2-24 months of age) cerebral cortex and white matter. The individual glycolipids were separated quantitatively by a combination of column and thin-layer chromatographic methods on silica gel, DEAE-cellulose and Sephadex G-25. In cerebral cortex GD1a and GM1 were the major fractions and constituted more than 70 per cent of the total gangliosides. The concentrations of neutral glycolipids, except for galactosylceramides, were very low: lactosylceramide and glucosylceramide comprised 30 and 5 nmol/g wet weight, respectively. In white matter their concentrations were 10 times higher. The ganglioside concentration was only 50 per cent of that in cerebral cortex: the difference was accounted for mainly by the much lower content of the major di- and trisialogangliosides. Stearic acid was the predominant fatty acid of all brain gangliosides. GM3, and GD3 had a considerable content of the very long-chain fatty acids, C22-C24, particularly in the white matter. Glucosylceramide and lactosylceramide had almost identical fatty acid patterns between each other in cerebral cortex and white matter. In the cerebral cortex stearic acid and in the white matter the very long-chain acids predominated. d20:1 Sphingosine comprised more than 20 per cent of total sphingosine in all the gangliosides of the Gl- and G2-series. GM3, and GD3 like lactosylceramide contained significantly less of d20:1 sphingosine. The findings suggest the existence of separate compartments for the biosynthesis of the gangliosides. Glucosylceramides and lactosylceramides of white matter have the same ceramide composition as the galactosylceramides with normal fatty acids and are thus unlikely to be intermediates in the metabolism of the major brain gangliosides which have a completely different fatty acid composition.  相似文献   

2.
A thin-layer chromatographic procedure for the isolation of tissue phospholipids and their subsequent analysis is described. The method has been applied to the determination of the fatty acids of phosphoglycerides in human brain from the early fetal stage to old age. The study shows changes in the distribution and fatty acid composition of each phosphoglyceride in normal brain, although they are quite small after early childhood. A lipid-specific fatty acid pattern for each of the four major phosphoglycerides was found. Besides this, the pronounced differences between fatty acids of the lipids from the cerebral cortex and from the adjacent white matter justify speaking of a tissue-specific fatty acid pattern for brain phosphoglycerides. The phospholipids of cerebral white matter contained more monoenoic acid but much less polyunsaturated fatty acid than those of cerebral cortex. The brain phosphoglycerides also showed an age-dependent fatty acid pattern. With increasing age the concentration of the fatty acids of the linoleate family diminished while that of the linolenate family increased. Brain inositol phosphoglycerides, the fatty acid composition of which has not been studied systematically before, were characterized by a large concentration of arachidonate which was nearly as high for white as for gray matter and showed only small changes with age.  相似文献   

3.
Abstract— —Cholesteryl esters were isolated from the cerebral cortex and white matter of human brains at different ages, and their concentration and composition determined. The esters were separated from other lipids by chromatography on silicic acid and finally purified by TLC. The fatty acids were converted to the methyl esters by alkaline trans-methylation and analysed by GLC. A TLC method was elaborated for quantitative determination of small amounts of cholesteryl esters in the presence of free cholesterol. The concentration of cholesteryl esters was only 0·1–0·2 per cent of the total cholesterol content of cerebral tissue in older children and adults. During early myelination the concentration was many times greater, especially in the white matter but it never exceeded 2 per cent of the total cholesterol in any subject. The major fatty acids of human brain cholesteryl esters were oleic, palmitic, palmitoleic and arachidonic acid. After completion of myelination, arachidonic acid constituted the major fatty acid. There were fairly small differences in the fatty acid pattern of the cholesteryl esters between grey and white matter, but the concentration of polyunsaturated fatty acids was larger in the grey matter. Cholesteryl esters appear to play an important role in the metabolism of the phosphoglyceride fatty acids in cerebral tissue.  相似文献   

4.
Abstract— The variation with age of the fatty acid composition of the major lipids in human brain myelin was compared with that of cerebral white matter from the same region. The myelin was isolated from the semiovale centre of the cerebrum of 27 subjects neonatal to old aged. The phospholipid, cholesterol and galactolipid concentrations were determined in all the samples, as were the proportions of the major phospholipid classes. The proportions of cholesterol and especially of the galactolipids increased in myelin during the first 6 months, and in cerebral white matter up to 2 years. During this period the individual phospholipids also varied substantially. Serine phosphoglycerides and especially sphingomyelins increased, and choline phosphoglycerides decreased. The fatty acid patterns of ethanolamine phosphoglycerides (EPG) and sphingomyelins underwent the largest changes. The proportions of saturated fatty acids in EPG diminished rapidly, and there was an increase of monoenoic acids. Fatty acids of the linoleic acid series showed a peak between 4 and 12 months, after which time their proportion slowly diminished to old age. The major fatty acid of this series was docosatetraenoic acid, 22:4 (n-6), which constituted more than 25% of total fatty acids at the maximum level. The fatty acid changes were larger in cerebral white matter, but from 2 years of age the EPG fatty acid pattern in myelin was similar to that in white matter. The fatty acid changes in serine and choline phosphoglycerides of myelin with maturation were much less striking than in EPG but of a similar type. In myelin sphingomyelin the proportion of saturated long-chain fatty acids, C16-C22, diminished, while that of monoenoic acids increased and continued to do so up to old age. From 2 years of age the fatty acid patterns in myelin and cerebral white matter were quite similar. Also the fatty acid patterns of cerebrosides and sulphatides in cerebral white matter and myelin were the same except for the first 2 months of life. The same fatty acid changes occurred in cerebrosides and sulphatides as in the sphingomyelins, i.e. increased proportions of unsaturated (monoenoic) acids. The proportions of 24:1 and 24h:1 and of the odd-numbered fatty acids 25:1 and 23h:1 continued to increase to old age. The variations of the individual lipid fatty acid patterns were small except in the youngest age classes, in which the variations were presumably ascribable to the difficulty in determining the gestational age.  相似文献   

5.
Membrane lipids of human peripheral nerve and spinal cord.   总被引:4,自引:0,他引:4  
Major membrane lipids were determined in specimens of human peripheral nerve (cauda equina) and spinal cord of 10 subjects aged 20-70 years. The same lipids were also assayed in myelin from the same tissues isolated with two different procedures and in myelin of cauda equina from 3 subjects aged 17-91 years isolated with a third method. The concentrations (mean and standard deviation) of phospholipids were 90 +/- 11 and 96 +/- 9 nmol/g fresh weight; of cholesterol 70 +/- 15 and 101 +/- 16; of cerebroside 19 +/- 3 and 41 +/- 7; of sulfatide 10 +/- 1 and 11 +/- l; and of gangliosides 0.80 +/- 0.08 and 0.40 +/- 0.05 N in cauda equina and spinal cord, respectively. The proportion of ethanolamine phosphoglyceride was lower and that of sphingomyelin higher in cauda equina than in spinal cord. The myelin of peripheral nerve and spinal cord contained almost the same proportions of lipids as the whole tissue. The protein-bound sialic acid content was 3-fold higher than the lipid-bound sialic acid content in cauda myelin. The fatty acid patterns of choline, ethanolamine, inositol and serine phosphoglycerides of spinal cord and its myelin, were very similar to those of cerebral white matter, while the phosphoglycerides of cauda equina had higher proportions of monoenoic acids and lower proportions of polyunsaturated fatty acids. The fatty acid patterns of sphingomyelin, cerebroside and sulfatide of spinal cord were similar to those of cerebral white matter, while those of cauda equina contained significantly more saturated fatty acids. This suggests that the lipid and fatty acid compositions of peripheral nerve are particularly suitable for the formation of a tightly packed myelin membrane which can be a powerful shield against infections and other injuries.  相似文献   

6.
Phospholipid and fatty acid composition of human brain tumors is presented. The white matter contains a greater amount of phosphatidylinositol and a very low level of lysophosphoglycerides, as compared to the grey matter. Glioma and meningioma tumors contain a greater amount of phosphatidylinositol, sphingomyelin, and lysophosphoglycerides, as compared to normal cortex tissue. A significant rise in oleic, linoleic and arachidonic acid content in tumor tissue was observed. It is suggested, that changes in lipid composition, may play a role in structural and functional membrane perturbations in neoplastic cells.  相似文献   

7.
8.
Abstract: Brain grey and white matter of a case of Pelizaeus-Merzbacher disease (connatal type Seitelberger) of a 19-month-old boy were analysed with respect to lipids. Cerebrosides and sulfatides were totally absent in the pathological brain. In comparison to control, differences in gangliosides could be detected in grey and white manner. C18:1, fatty acids were markedly reduced in the main glycerophospholipids of white matter. In sphingomyelin of cortex and white matter 90% of fatty acids were C18:0; longer chains were absent. In contrast: PNS (nervus fernoralis) lipids contained the main galactolipids. However, these a s well as all other lipid classes showed a 20% reduction compared with values obtained from nervus femoralis of an infant of the same age. The fatty acid patterns of all lipid classes were determined. The only marked deviations from normal were observed in the C24-chains of cere-brosides and sulfatides. The formalin-fixed brain of an older brother (same disease) was analysed only with respect to glycolipids: neither cerebrosides nor sulfatides could be detected.  相似文献   

9.
A number of intact neutral glycosphingolipids (globo, asialoganglio, neolacto, and gala series), gangliosides, and sulfatide were analyzed by proton nuclear magnetic resonance (NMR) using dimethyl-d6 sulfoxide as a solvent at different conditions of measurement. The chemical shifts of amide proton of ceramide, N-acetylhexosamine and sialic acid moieties were positioned with regularity, thus providing their molar composition. The chemical shifts of amide proton in ceramide moiety differed with respect to constituent fatty acids; delta 7.45 to 7.52 ppm at 25 degrees C for the nonhydroxy acids and 7.32 to 7.42 ppm for the hydroxy acids. The chemical shifts of methyl proton in N-acetyl group were distinguished between N-acetylhexosamine and N-acetylneuraminic acid, and those in N-acetylgalactosamine were discriminated between neutral glycolipids and gangliosides. In the presence or absence of D2O in dimethyl sulfoxide at 110 degrees C, the anomeric protons resonated with regularity characteristic of respective monosaccharide linkages, and the anomeric protons of N-acetylgalactosamine in neutral glycolipids and gangliosides were clearly distinguished. The present study thus demonstrates the general applicability of NMR procedure to glycosphingolipids, providing the determination of chemical composition of both the lipophilic and carbohydrate moieties and the structural elucidation.  相似文献   

10.
Gangliosides in Human Fetal Brain   总被引:1,自引:0,他引:1  
The ganglioside concentration and composition were determined in 42 human fetal brains from gestational week 10 to 22, a period that is morphologically characterized by rapid neuroblast proliferation and migration. The ganglioside concentration was constant during this period, approximately 1 mumol of ganglioside sialic acid/g of fresh tissue weight. At gestational week 10 the ganglioside pattern was dominated by gangliosides of the ganglio b series, with the major ganglioside being GT1b, contributing 40% of total ganglioside sialic acid, whereas GD1b and GD3 contributed only 15 and 10%, respectively. The proportion of b series ganglioside decreased to gestational week 22, with the most pronounced relative reduction affecting GD3, but also GT1b and GD1b to a lesser extent. The ganglioside GQ1b increased in content from gestational week 10 and peaked around week 16. The proportion of GD1a increased markedly between gestational week 12 and 14 and slowly between week 14 and 18 and then increased rapidly from week 20. Ganglioside GM1 underwent a similar change. Gangliosides of the lacto series contributed 6-10% of ganglioside sialic acid between gestational week 10 and 15, and thereafter the proportion slowly decreased. 3'-isoLM1 decreased rapidly in content from gestational week 10 (20 nmol/g of fresh weight) to week 22 (less than 0.5 nmol/g of fresh weight), whereas the gangliosides of the neolacto series (3'-LM1 and 3',8'-LD1) showed a slower and less marked decline in level. The biological significance of the ganglioside changes is discussed.  相似文献   

11.
Abstract— Sialoglycoproteins and gangliosides were characterized in various bovine brain regions by determining the amount of sialic acid. Expressed per g dry weight, the gangliosidic sialic acid ranged from 11·20 to 1·93 μmol and the glycoprotein sialic acid from 8·93 to 1·84 μmol in grey and white matter respectively (values not corrected for incomplete release and breakdown during hydrolysis). Both the sialoglycoproteins and the gangliosides occur in highest concentration in areas predominating in neuronal cell bodies (cerebral grey, cerebellar grey, caudate nucleus). The lowest concentrations are found in those areas, consisting largely of myelinated fibre tracts and glial cells (pons, medulla, corpus callosum, cerebral white). Relative to the gangliosides the sialoglycoproteins are somewhat more concentrated in white matter.
The sialidase activity was investigated with endogenous substrate as well as with additional gangliosides or sialoglycopeptides. In all conditions the activity was much greater in grey matter than in white matter. The regional sialidase distribution more or less parallels the distribution of sialic acid in the various regions. At high substrate level the sialoglycopeptides inhibit the sialidase activity. There are indications that gangliosides are a far better substrate for brain sialidase than glycoproteins or glycopeptides. The possible significance of this phenomenon is discussed.  相似文献   

12.
Brain sphingoglycolipids in Krabbe's globoid cell leucodystrophy   总被引:3,自引:1,他引:2  
Abstract— Seven sphingoglycolipids were isolated from the white matter of a patient with globoid cell leucodystrophy (Krabbe's disease). After purification by saponification and column and preparative thin-layer chromatography, these compounds were analysed for the carbohydrate composition and sequence and for fatty acid composition by paper and gas-liquid chromatography. The compounds were identified as gluco- and galactocerebrosides, lactosyl-ceramide, digalactosy I-glucosyl-ceramide, two types of tetrahexosyl-ceramides (asialo-ganglioside and globoside), and sulphatide. Glucocerebrosideconstituted 13 percent of total cerebroside in white matter, but sulphatide contained only galactose. Galactocere-broside and sulphatide exhibited compositions of fatty acids similar to those in normal white matter, with only minor abnormalities. Other sphingoglycolipids showed fatty acid patterns with relatively high proportions of longer-chain fatty acids, rather than the predominant C18:0 acid usually found in ceramide hexosides of the brain. Hematoside, also found in the white matter in a significant amount, similarly contained a large proportion of longer-chain fatty acids, whereas other gangliosides contained predominantly C18:0 acid. The abnormal ceramide hexoside pattern was restricted mostly to white matter except for glucocerebroside, which constituted 32 per cent of grey matter cerebroside. We postulate that the visceral type of sphingoglycolipids may be constituents of globoid cells, abundantly present in white matter and considered to be cells of mesenchymal origin.  相似文献   

13.
A modified procedure for the analysis of mixtures of tissue gangliosides   总被引:7,自引:3,他引:4  
Abstract— A modified procedure is described for quantification of gangliosides in a mixture using thin-layer chromatography. Using this procedure, the gangliosides in human peripheral nerve were quantified, and compared with those in cerebral cortex and white matter.  相似文献   

14.
Gangliosides, cholesterol, and phospholipids were quantitated in the tissues of 11 human neural tumors and the cells of two gliomas cultured in vitro. All tumor tissues contained higher water concentrations but lower total lipid concentrations than either human grey or white matter. In general they contained less cholesterol, sphingomyelin, and serine glycerophospholipid but more choline glycerophospholipid than white matter. Concentrations of total ganglioside sialic acid were intermediate between grey and white matter. Compared with normal brain, all tumors had greater proportions of the structurally less complex gangliosides and smaller proportions of the more complex gangliosides. This was most marked in the rapidly growing tumors while the better differentiated astrocytomas contained the greatest proportions of complex gangliosides. The cells of the cultured tumors contained amounts of total lipid and total phospholipid similar to their parent tissues. However, the cultures had less cholesterol, sphingomyelin, and total ganglioside than their parent tissues. There were significant amounts of choline and ethanolamine plasmalogens in both cultures and parent tissues. The ganglioside patterns of both cultures were complex but they contained a greater proportion of structurally simpler gangliosides than their parent tissues.-Yates, A. J., D. K. Thompson, C. P. Boesel, C. Albrightson, and R. W. Hart. Lipid composition of human neural tumors.  相似文献   

15.
Abstract— Fractions enriched in neuronal cell bodies and in glial cells were isolated from rabbit cerebral cortex by discontinuous gradient centrifugation. The ratio of total lipid to protein was approx. 50 per cent higher in the glial fraction than in the neuronal fraction. The fatty acid composition for the major phosphoglycerides was with few exceptions, similar for neurons and glia. The ganglioside concentration was very low for both cell types, but was approx. twice as high in the glial cells as in the neurons. The pattern of individual gangliosides was, however, very similar for the glial and neuronal fractions and did not differ from that of unfractionated cerebral cortex, synaptosomes and mitochondria. The latter results are discussed in relation to the estimated amounts of plasma membrane in the neuronal and glial fractions.  相似文献   

16.
A quantitative neuropathological necropsy study of 22 control and 22 chronic alcoholic subjects showed a statistically significant loss of brain tissue in the chronic alcoholic group. The loss of tissue appeared to be from the white matter of the cerebral hemispheres rather than the cerebral cortex. This may reflect a primary alteration in the composition or structure of the white matter or it may be secondary to loss of nerve cells from the cortex with subsequent degeneration of the axons in the white matter. Further morphometric analyses including cortical neuronal counts will be necessary to clarify this issue.  相似文献   

17.
In the brain of several animal species testosterone is converted into a series of 5-alpha-reduced metabolites, and especially into 17-beta-hydroxy-5-alpha-androstan-3-one (DHT), by the action of the enzyme 5-alpha-reductase. The formation of DHT has never been evaluated in the white matter structures of the brain, which are composed mainly of myelinated axons. The experiments here described were performed in order to study, in the rat and the mouse, the DHT forming activity of several white matter structures, in comparison with that of the cerebral cortex and of the hypothalamus. Two sampling techniques were used in the rat: microdissection under a stereo-microscope from frozen brain sections of fragments of corpus callosum, optic chiasm and cerebral cortex; fresh tissue macrodissection of subcortical white matter, cerebral cortex and hypothalamus. Only macrodissection was used in the mice. The data show that, independently from the sampling technique used, there are considerable quantitative differences in the distribution pattern of the 5-alpha-reductase activity within different brain structures. Both in the rat and in the mouse, the enzyme appears to be present in higher concentrations in the white matter structures, than in the cerebral cortex and in the hypothalamus. The present results clearly show that the subcortical white matter and the corpus callosum are at least three times as potent as the cerebral cortex in converting testosterone into DHT. An even higher 5-alpha-reductase activity has been found in the optic chiasm. Further work is needed in order to understand the possible physiological role of DHT formation in the white matter structures.  相似文献   

18.
Abstract: Three major clinical variants of Gaucher disease have been defined: Type I, chronic nonneuronopathic; Type II, acute neuronopathic; and Type III, subacute neuronopathic. In a search for the underlying molecular basis of the neurological manifestations, the concentration and composition of cholesterol, phospholipids, neutral glycosphingolipids, and gangliosides were examined in cerebral and cerebellar cortices of five cases of Type II, eight cases of Type III, and one case of presumed Type I/III. In Type II the concentration of glucosylceramide was 140-530 μmol/kg in cerebral cortex and 51-450 μmol/kg in cerebellar cortex, the highest values found in the most fulminant cases. These concentrations were 20-80 times greater than normal in cerebral cortex and 5-40 times normal in cerebellar cortex. In Type III the concentration of glucosylceramide was 37-65 and 59-1750 μmol/kg in cerebral and cerebellar cortex, respectively. The highest concentrations were found in the cerebellum of patients who had survived splenectomy for several years. The ceramide composition of the accumulated glucosylceramide suggested that brain gangliosides were the major precursors of the glucosylceramide in brains of Type II but in cerebellar cortex in Type III was partly of extracerebral origin. The levels of lactosylceramide and oligohexaosylceramides were slightly raised in all brain specimens from the Gaucher cases. The ganglioside concentration was normal, whereas there was a certain increase in the proportion of GM2 and GM3 gangliosides. The brain glycosphingolipid changes in the Type I/III case were similar but slightly less than those in Type III cases of corresponding age. Glucosylsphingosine (psychosine), never detected in normal human brain, was demonstrated in brains from all the Gaucher cases. The psychosine concentration was highest in Type II cases, 3.8-8.8 and 3.9-12.3 μmol/kg in cerebral and cerebellar cortex, respectively, with the highest values found in the most fulminant cases. In Type III the psychosine concentration varied more widely, 0.8-4.6 and 1.4-6.3 μmol/kg in cerebral and cerebellar cortex, respectively. The lowest value, 0.7 μmol/kg, was found in the Type I/III case. Our method detected psychosine down to 0.01 μmol/kg, which means that the concentration of psychosine was increased at least 100- to 1000-fold in Gaucher grey matter. We suggest that the accumulation of the cell-toxic substance psychosine is the basis for the extensive neuronal cell loss in Gaucher disease, which is most striking in Type II disease.  相似文献   

19.
Sulphatides and cerebrosides from white matter of brains of patients with metachromatic leucodystrophy (MLD) have been isolated and compared in fatty acid composition to those glycolipids found in MLD kidney tissue. A marked difference in glycolipid composition was found between the brain and kidney tissues. The sulphatides accumulated in MLD kidney have the same fatty acid profile as those found in normal kidney tissue and are typical‘kidney sulphatides.’The neutral glycolipids of MLD kidney retain larger amounts of the longer chain acids than do the cerebrosides of MLD brain white matter and thus resemble more closely in fatty acid composition, glycolipids of normal tissue. Structurally, the sulfate group is located at the C-3 position of the galactose molecule in sulphatides from normal and MLD tissue. As in the brain white matter, the sulphatides which accumulate in the kidney tissue of patients with MLD are normal in structure and composition.  相似文献   

20.
Topographical Atlas of the Gangliosides of the Adult Human Brain   总被引:3,自引:1,他引:2  
Forty different brain samples, consisting of neocortical, archicortical, and paleocortical areas; telencephalic, diencephalic, and mesencephalic subcortical nuclei; and the cerebellum as well as some of the corresponding white matter bundles were analyzed with respect to total content of ganglioside-sialic acid and the ganglioside pattern. The total content of gangliosides seems to depend mainly on the proportions of gray and white matter. Thus, neocortical areas, which are rich in gray matter, have a four- to fivefold higher ganglioside content (per milligram of protein) than white matter-rich samples such as optic chiasm, capsula interna, or corpus callosum. White matter-rich regions, although very heterogeneous in ganglioside composition, are further characterized by appreciable amounts of the myelin-enriched GM4. In the neocortex a remarkable degree of regional pattern differences was revealed. In the frontal and parietal areas there is a moderate, and in the temporal region a strong preponderance of sialic acid bound to gangliosides of the a-pathway (GD1a, GM1). In contrast, the occipital cortex favors the b-pathway of ganglioside synthesis (GQ1b, GT1b, GD1b). A predominance of "b-gangliosides" was found in all structures that are related to the visual system (optic chiasm, pulvinar-thalamus, superior colliculi, visual cortex) as well as in the cerebellum and the nucleus ruber. All diencephalic nuclei tend to favor slightly "b-gangliosides," while the mesencephalic nuclei are very heterogeneous in their ganglioside composition. A preponderance of "a-gangliosides" was found in the periamygdalar cortex, putamen, inferior colliculi, substantia nigra, frontal white matter, internal capsule, globus pallidus, basal nucleus of Meynert, and corpus callosum as well as in the frontal, parietal, and temporal cortices. An exceptional predominance of GM1 and GD1a was revealed for the hippocampal archicortex and the amygdala, suggesting a possible functional correlation to glutaminergic synaptic transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号