首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight rhesus macaques between 127 and 132 days of gestation had catheters implanted into maternal femoral vessels and the amniotic fluid cavity and were placed in a vest-and-tether system for chronic catheter maintenance. Uterine activity was continuously recorded, and paired maternal arterial blood and amniotic fluid samples were collected at 0900 h (AM) and 2100 h (PM) until delivery and analyzed for prostaglandin metabolites (PGFM and PGEM-II). A circadian pattern in uterine contractility was observed, with peak activity occurring between 1900 and 0100 h (p less than 0.001). No significant AM-PM differences were observed in maternal plasma PGFM (240 +/- 24 AM vs. 273 +/- 35 PM) or PGEM-II (537 +/- 41 AM vs. 484 +/- 34 PM) or amniotic fluid PGFM (360 +/- 72 AM vs. 287 +/- 70 PM) or PGEM-II (1626 +/- 383 AM vs. 1771 +/- 431 PM). All values represent mean +/- SEM, pg/ml. Additional samples were collected at 3-h intervals for 24 h at selected times during the study. This more intensive sampling protocol also failed to reveal any significant time trends in maternal plasma or amniotic fluid prostaglandins. Despite the lack of AM-PM differences, amniotic fluid PGFM and PGEM-II increased significantly as delivery approached (p less than 0.01). It appears that circadian uterine activity is not related to changes in maternal plasma or amniotic fluid prostaglandins. Although prostaglandins are responsible for the progression of labor, other factors may be involved in the generation of uterine activity rhythms prior to the initiation of labor.  相似文献   

2.
This study tested the hypothesis that changes in photoperiod alter plasma catecholamine concentrations in the rhesus monkey during late gestation. Twelve chronically catheterized pregnant rhesus macaques were acclimated to a 12-h photoperiod (lights-on, 0700-1900 h). Under the control L:D cycle, blood samples were collected at 3-h intervals over 24 h for catecholamine analysis. Plasma concentrations (mean +/- SEM, pg/ml) ranged from 678 +/- 90 to 928 +/- 142 for norepinephrine; 230 +/- 22 to 631 +/- 141 for epinephrine; and 282 +/- 70 to 1090 +/- 362 for dopamine. A diurnal rhythm was observed in epinephrine with peak concentrations during lights-on (0900-1800 h; p less than 0.05, compared to lights-off). After the first sampling protocol, the animals were divided equally between two groups: phase shift, in which lights-on was shifted 11 h (2000-0800 h) and constant light, with lights on continuously. After the phase shift, a parallel shift in the plasma epinephrine rhythm was noted, with peak levels observed between 2200 and 0700 h (p less than 0.05). Constant light abolished the rhythm in epinephrine, with an overall reduction in mean basal levels of all three catecholamines. Daily melatonin infusions (0.2 micrograms/kg/h, 1900-0630 h) under constant light failed to restore the epinephrine rhythm or to return basal catecholamine concentrations to control photoperiod levels. These data suggest that photoperiod entrains the rhythm in epinephrine secretion, but the rhythm is ablated under constant conditions. Further, melatonin does not appear to play a role in the regulation of catecholamine secretion in the pregnant rhesus macaque.  相似文献   

3.
To examine the responses of the sympatho-adrenal system to reduced oxygen supply we studied plasma and tissue concentrations of catecholamines during normoxemia, hypoxemia, and asphyxia in 22 fetal guinea pigs near term. Fetal blood was obtained by cardiopuncture in utero under ketamine/xylazine-anesthesia. Catecholamines were determined in plasma and tissue of 15 organs and 14 brain parts by HPLC-ECD. During normoxemia (SO2 54 +/- 4 (SE) %, pH 7.36 +/- 0.02, n = 5) plasma catecholamine levels were low (norepinephrine 447 +/- 53, epinephrine 42 +/- 12, dopamine 44 +/- 6 pg/ml). During hypoxemia (SO2 27 +/- 3%, pH 7.32 +/- 0.01, n = 6) and asphyxia (SO2 24 +/- 2%, pH 7.23 +/- 0.02, n = 11) tissue catecholamine concentrations changed with changing blood gases and with increasing plasma catecholamines. Norepinephrine concentrations increased in both skin and lung and decreased in liver, pancreas, and scalp; those of epinephrine increased in the heart, lung liver, and scalp and decreased in the adrenal. There were only minor changes in brain catecholamine concentrations except for a 50% reduction in dopamine in the caudate nucleus. Concentrations of dopamine catabolite 3,4-dihydroxyphenylacetic acid decreased in many brain parts, suggesting that cerebral catecholamine metabolism was affected by hypoxemia and asphyxia. We conclude that the sympatho-adrenal system of fetal guinea pigs near term is mature and that its stimulation by reduced fetal oxygen supply leads to changes in both plasma and tissue catecholamine concentrations.  相似文献   

4.
Vascular reactivity to norepinephrine in rats with cirrhosis of the liver   总被引:2,自引:0,他引:2  
Vascular reactivity to norepinephrine was studied in rats with early cirrhosis of the liver and in control rats. Cirrhotic rats showed water and sodium retention but not ascites. Studies were performed in whole animals, isolated hindquarters, and isolated femoral arteries. Plasma catecholamine levels were measured by radioenzymoassay and their urinary metabolites by gas-liquid chromatography. Plasma norepinephrine was 331 +/- 49 pg/mL (mean +/- SEM) in control rats and 371 +/- 66 pg/mL in cirrhotic animals (p greater than 0.05). No differences in plasma epinephrine or dopamine were observed. Urinary excretion of catecholamine metabolites was increased in cirrhotic rats. These data suggest a moderate activation of the sympathetic nervous system. In basal conditions, cirrhotic rats showed lower mean arterial pressure than controls (101 +/- 4 vs. 116 +/- 4 mmHg (1 mmHg = 133.3 Pa); p less than 0.01). However, perfused hindlimb resistance was similar in cirrhotic and in control animals. In the whole animal and in the perfused hindquarter, the contractile response to norepinephrine was similar for control and for cirrhotic rats. The contractile response to norepinephrine exhibited by isolated femoral arteries was similar in those from cirrhotic and control rats. This indicates that the peripheral vascular bed has a well-maintained ability to constrict in response to norepinephrine, suggesting that circulatory abnormalities in early experimental cirrhosis are not caused by refractoriness of the vascular smooth muscle to norepinephrine.  相似文献   

5.
Maternal dehydration consistent with mild water deprivation or moderate exercise results in maternal and fetal plasma hyperosmolality and increased plasma arginine vasopressin (AVP). Previous studies have demonstrated a reduction in fetal urine and lung fluid production in response to maternal dehydration or exogenous fetal AVP. As fetal urine and perhaps lung liquid combine to produce amniotic fluid, maternal dehydration may affect the amniotic fluid volume and/or composition. In the present study, six chronically-prepared pregnant ewes with singleton fetuses (128 +/- 1 day) were water deprived for 54 h to determine the effect on amniotic fluid. Maternal plasma osmolality (306.5 +/- 0.9 to 315.6 +/- 1.9 mOsm/kg) and AVP (1.9 +/- 0.2 to 22.2 +/- 3.2 pg/ml) significantly increased during dehydration. Similarly, fetal plasma osmolality (300.0 +/- 0.9 to 312.7 +/- 1.7 mOsm/kg) and AVP (1.4 +/- 0.1 to 10.4 +/- 2.4 pg/ml) increased in parallel to maternal values. Amniotic fluid osmolality (276.8 +/- 5.7 to 311.6 +/- 6.5 mOsm/kg) and sodium (139.8 +/- 4.8 to 154.0 +/- 5.4 mEq/l) and potassium (9.1 +/- 1.3 to 13.9 +/- 2.4 mEq/l) concentrations increased while a significant (35%) reduction in amniotic fluid volume occurred (871 +/- 106 to 520 +/- 107 ml). These results indicate that maternal dehydration may have marked effects on maternal-fetal-amniotic fluid dynamics, possibly contributing to the development of oligohydramnios.  相似文献   

6.
Analysis of plasma catecholamines (norepinephrine, epinephrine and dopamine) by high-performance liquid chromatography using 1,2-diphenylethylenediamine as a fluorescent reagent is described. We have developed an automatic catecholamine analyser, based on pre-column fluorescence derivatization and column switching. The analysis time for one assay was 15 min. The correlation coefficients of the linear regression equations were greater than 0.9996 in the range 10–10 000 pg/ml. The detection limit, at a signal-to-noise ratio of 3, was 2 pg/ml for dopamine. A new method of sample preparation for the pre-column fluorescence derivatization of plasma catecholamines was used. In order to protect the catecholamines from decomposition, an ion-pair complex between boric acid and the diol group in the catecholamine was formed at a weakly alkaline pH. The stabilities of plasma catecholamines were evaluated at several temperatures. After complex formation, the catecholamines were very stable at 17°C for 8 h, and the coefficients of variation for norepinephrine, epinephrine and dopamine were 1.2, 4.2 and 9.3%, respectively.  相似文献   

7.
Plasma epinephrine and norepinephrine concentrations were measured in seventeen unanaesthetized 3 to 4 days-old piglets while in a thermoneutral environment (31.3 degrees C) and 30, 45 and 60 min after induction of environmental cold stress (19.9-23.1 degrees C). Plasma epinephrine and norepinephrine concentrations in a warm environment were 142 +/- 26 pg/ml, and 456 +/- 44 pg/ml respectively. Environmental cold stress evoked significant increases in norepinephrine values after 30 (624 +/- 58 pg/ml), 45 (626 +/- 60 pg/ml) and 60 (626 +/- 54 pg/ml) min of cold stress. Plasma epinephrine concentrations did not significantly change during environmental cold stress. Post-hoc stratification of piglets into normothermic (deep rectal temperature 38.6 degrees C-38.8 degrees C, n = 9) and hypothermic (deep rectal temperature 37.1 degrees C-37.7 degrees C, n = 7) subgroups revealed significant increases in plasma norepinephrine concentrations only in the hypothermic subgroup. We conclude that plasma norepinephrine, but not epinephrine, is increased in newborn piglets during environmental cold stress and that the changes in norepinephrine concentrations are related to body core hypothermia. We speculate that hypothermia-mediated reductions in peripheral norepinephrine breakdown and re-uptake contribute to the rise in circulating levels.  相似文献   

8.
To assess the response of the sympathoadrenal system of the primate fetus to oxygen deprivation, we measured plasma catecholamines in 8 chronically catheterized fetal rhesus monkeys. A range of fetal hypoxaemia was produced by having the mother inspire 15, 10, or 9% oxygen mixtures while tranquilized with ketamine. Catecholamines from fetal carotid and maternal femoral arteries were measured by radioenzymatic assay. Fetal plasma norepinephrine and epinephrine concentrations increased significantly at all levels of hypoxaemia, but dopamine increased only at very low fetal oxygen tensions. Norepinephrine levels exceeded those of epinephrine and dopamine under all conditions. Relatively more severe hypoxaemia was necessary to elevate concentrations of epinephrine above baseline as compared with norepinephrine. A negative exponential correlation (P less than 0.001) was found between both fetal arterial PO2 and oxygen content and plasma norepinephrine and epinephrine, which was qualitatively similar to that observed previously in the sheep fetus. Maternal catecholamines were found to increase during hypoxaemia as well, but to a lesser degree than in the fetus.  相似文献   

9.
Prolonged oligohydramnios, or a lack of amniotic fluid, is associated with pulmonary hypoplasia and subsequent perinatal morbidity, but it is unclear whether short-term or acute oligohydramnios has any effect on the fetal respiratory system. To investigate the acute effects of removal of amniotic fluid, we studied nine chronically catheterized fetal sheep at 122-127 days gestation. During a control period, we measured the volume of fluid in the fetal potential airways and air spaces (VL), production rate of that fluid, incidence and amplitude of fetal breathing movements, tracheal pressures, and fetal plasma concentrations of cortisol, epinephrine, and norepinephrine. We then drained the amniotic fluid for a short period of time [24-48 h, 30.0 +/- 4.0 (SE) h] and repeated the above measurements. The volume of fluid drained for the initial studies was 1,004 +/- 236 ml. Acute oligohydramnios decreased VL from 35.4 +/- 2.9 ml/kg during control to 22.0 +/- 1.6 after oligohydramnios (P less than 0.004). Acute oligohydramnios did not affect the fetal lung fluid production rate, fetal breathing movements, or any of the other measured variables. Seven repeat studies were performed in six of the fetuses after reaccumulation of the amniotic fluid at 130-138 days, and in four of these studies the lung volume also decreased, although the overall mean for the repeat studies was not significantly different (27.0 +/- 5.2 ml/kg for control vs. 25.5 +/- 5.5 ml/kg for oligohydramnios). Again, none of the other measured variables were altered by oligohydramnios in the repeat studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Physical training decreases resting heart rate as well as heart rate and catecholamine responses to ordinary physical activity and mental stress. These effects have been speculated to diminish cardiac morbidity. However, the sparing of heartbeats and catecholamine production might be outweighed by exaggerated responses during training sessions. To elucidate this issue, heart rate was measured continuously and plasma catecholamine concentrations were measured frequently during 24 h of ordinary living conditions in seven endurance-trained athletes (T) and eight sedentary or untrained (UT) young males. T subjects had lower heart rates than UT subjects during sleep and during nontraining awake periods. However, because of the increase during training, the total 24-h heartbeat number did not differ between groups (107,737 +/- 3,819 for T vs. 113,249 +/- 6,879 for UT, P = 0.731). Neither during sleep nor during awake nontraining periods were catecholamine levels lower in T than in UT subjects. Peak catecholamine levels during exercise in T were much higher than peak levels in UT subjects, and 24-h average epinephrine and norepinephrine concentrations were twice as high. We concluded that in highly trained athletes the total number of heartbeats per day is not decreased and the catecholamine production is, in fact, increased.  相似文献   

11.
Previous research established a relationship between circulating sulfoconjugated norepinephrine (NE-SO4) and oxygen consumption at various exercise intensities. In this study, the stability of the NE-SO4 response was examined during sustained exercise at a constant relative intensity. Seven trained men bicycled at 78 +/- 3% of their maximal O2 consumption for 28 min and then rested on the ergometer for a comparable duration. After a 30-min rest, plasma samples were collected through an indwelling catheter at 7-min intervals during the exercise and recovery periods. Free NE and epinephrine increased sixfold during exercise. These changes were accompanied by increases in sulfoconjugated catecholamines, but only NE-SO4 achieved statistical significance (rest, 712 +/- 602; exercise, 1,329 +/- 1,163 pg/ml). This occurred at three collection periods (14, 21, and 28 min). Approximately 35, 52, and 95% of NE, epinephrine, and dopamine, respectively, existed as sulfoconjugated during exercise. Subject variation was present in the sulfoconjugated catecholamine response that could not be attributed to corresponding differences in circulating free catecholamine release. These findings implicate blood flow as a factor in the sulfoconjugation of NE, but not epinephrine or dopamine.  相似文献   

12.
Plasma free catecholamines rise during exercise, but sulfoconjugated catecholamines reportedly fall. This study examined the relationship between exercise intensity and circulating levels of sulfoconjugated norepinephrine, epinephrine, and dopamine. Seven exercise-trained men biked at approximately 30, 60, and 90% of their individual maximal oxygen consumption (VO2max) for 8 min. The 90% VO2max period resulted in significantly increased plasma free norepinephrine (rest, 219 +/- 85; exercise, 2,738 +/- 1,149 pg/ml; P less than or equal to 0.01) and epinephrine (rest, 49 +/- 49; exercise, 555 +/- 516 pg/ml; P less than or equal to 0.05). These changes were accompanied by consistent increases in sulfoconjugated norepinephrine at both the 60% (rest, 852 +/- 292; exercise, 1,431 +/- 639; P less than or equal to 0.05) and 90% (rest, 859 +/- 311; exercise, 2,223 +/- 1,015; P less than or equal to 0.05) VO2max periods. Plasma sulfoconjugated epinephrine and dopamine displayed erratic changes at the three exercise intensities. These findings suggest that sulfoconjugated norepinephrine rises during high-intensity exercise.  相似文献   

13.
The authors studied plasma renin activity (PRA), urinary epinephrine, norepinephrine and dopamine excretion and their mutual relationships in 54 healthy subjects under basal (recumbent) conditions and age-related orthostatic changes in these parameters. The test subjects were divided into six 10-years groups, according to their year of birth (1901-1910 to 1951-1960). In the oldest groups (1901-1910 and 1911-1920), both basal PRA values and norephrine and epinephrine excretion and their postural increase were smaller than in younger subjects. Conversely, urinary dopamine excretion and the dopamine/norepinephrine and epinephrine ratio rose with advancing age. There were no significant differences between the plasma sodium and potassium concentrations in the various groups. Urinary aldosterone excretion was slightly higher in the oldest group than in the others, but was still within the control value limits. The intravenous administration of Inderal reduced both resting PRA values and the orthostatic increase in the youngest age groups, so that their PRA approached the values in older subjects. Higher norepinephrine and epinephrine excretion and the lower dopamine/norepinephrine and epinephrine in young subjects may play a role in their higher PRA, especially in the orthostatic reaction. Diminution of sympathetic activity, with lower norepinephrine and epinephrine excretion and relatively high dopamine excretion, may have a direct bearing on the lower PRA values in older subjects. The diminished capacity of older subjects for catecholamine mobilization and raised renin secretion during an orthostatis stress may be related to the higher incidence of orthostatic forms of hypotension in old age.  相似文献   

14.
We studied the homeostatic secretory response of catecholamine secretion elicited by progressive bronchoconstriction in 18 swine in vivo. The potential reserve of the sympathetic nervous system (SNS) was first assessed by exogenous nicotinic stimulation with 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP). A dose of 250 micrograms/kg iv DMPP caused an increase in plasma norepinephrine (NE) concentration from 207 +/- 86 (basal) to 2,625 +/- 448 pg/ml (P less than 0.02) and in plasma epinephrine (EPI) from 10 +/- 5.0 to 1,410 +/- 432 pg/ml (P less than 0.05) in four swine. In four other swine, bronchoconstriction induced by aerosolized prostaglandin F2 alpha caused approximately a fivefold increase in airway resistance without hemodynamic changes. No increase in plasma EPI was observed. However, plasma NE increased from 330 +/- 131 to 1,540 +/- 182 pg/ml (P less than 0.02). In five swine receiving aerosolized acetylcholine (ACh), similar changes in airways resistance were not associated with significant changes in catecholamine concentration when mean arterial blood pressure (MAP) was unchanged. However, inhalation of sufficient ACh to cause a greater than 10% decrease in MAP caused progressive increase in catecholamine secretion. Plasma EPI increased from 32 +/- 16 (MAP = 124 +/- 7 Torr) to 1,165 +/- 522 pg/ml (MAP = 94 +/- Torr). Hypoxemia that occurred with bronchoconstriction (greater than or equal to 50 Torr) did not cause catecholamine secretion. However, severe hypoxemia (PO2 less than 30 Torr) caused large increases in plasma EPI concentrations from 84 +/- 27 to 1,463 +/- 945 pg/ml (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The interplay between the fetus and mother may play a key role in the regulation of primate pregnancy and parturition. This study was designed to test the hypothesis that fetectomy alters maternal pituitary-adrenal function. Between 117 and 122 days of gestation (term = 167 days), six rhesus macaques underwent surgery for catheter implantation. At surgery the fetuses were removed while the membranes and placenta were left in situ. Six additional intact catheterized pregnant animals served as controls. Animals were maintained under a 12L:12D cycle with lights-on from 0700 to 1900 h. Beginning at least 1 wk after surgery, maternal arterial blood samples were collected at 3-h intervals for 24 h for hormone and catecholamine analysis. This sampling protocol was repeated at weekly intervals until cesarean delivery at 151-157 days of gestation. Following fetectomy, plasma ACTH, dehydroepiandrosterone sulfate (DHEAS), and cortisol levels were significantly lower (36%, 35%, and 44%, respectively) compared with control animals (P;lt 0.05). Despite a significant reduction in overall levels, the rhythm in maternal plasma cortisol was maintained following fetectomy. Plasma dopamine and norepinephrine were also depressed (P;lt 0.05), whereas epinephrine remained unaffected. Our data clearly demonstrate the role of the fetus in the regulation of the maternal pituitary-adrenal axis during gestation. This interaction plays a significant role in the regulation of maternal endocrine function that may influence the initiation of labor.  相似文献   

16.
To determine whether changes in left ventricular catecholamine content occur during the first 30 to 90 min of acute myocardial infarction, myocardial catecholamine (radioenzymatic assay) over the interval was studied in the dog. In nine pentobarbital-anesthetized opened-chest dogs without coronary ligation, myocardial catecholamine at 2.5 h after pentobarbital (i) consisted mainly of norepinephrine (87% total catecholamine), (ii) showed a base to apex gradient in norepinephrine (1.44 +/- 0.10 vs. 1.03 +/- 0.10 micrograms/g, p less than 0.05) and dopamine (0.20 +/- 0.03 vs. 0.12 +/- 0.02 micrograms/g, p less than 0.05) but not epinephrine (0.017 vs. 0.016 micrograms/g), and (iii) showed no difference in norepinephrine, dopamine, or epinephrine across basal, mid, and apical left ventricular transverse planes spanning the vascular territories of the two coronary arteries. In 18 pentobarbital-anesthetized dogs with coronary ligation, (i) norepinephrine, measured in 14 regions across the mid left ventricle after 90 min ischemia in four dogs, was less in the ischemic center of the occluded bed than normal myocardium (1.01 +/- 0.04 vs. 1.29 +/- 0.04 micrograms/g, p less than 0.05), and (ii) norepinephrine was unchanged in normal myocardium of 14 dogs at 30, 60, 90 min, and 48 h but decreased in ischemic myocardium by 31% at 60 min (0.89 +/- 0.10 vs. 1.29 +/- 0.08 micrograms/g, p less than 0.025) and 79% at 48 h (0.27 +/- 0.04 vs. 1.26 +/- 0.08 micrograms/g, p less than 0.001). Thus, norepinephrine depletion from ischemic but not normal myocardium is detectable by 60 min during acute myocardial infarction.  相似文献   

17.
Head-down bed rest at an angle of 6 degrees was used as an experimental model to simulate the hemodynamic effects of microgravity, i.e., the shift of fluids from the lower to the upper part of the body. The sympathoadrenal activity during acute (from 0.5 to 10 h) and prolonged (4 days) head-down bed rest was assessed in eight healthy men (24 +/- 1 yr) by measuring epinephrine (E), norepinephrine (NE), dopamine (DA), and methoxylated metabolite levels in their plasma and urine. Catecholamine (CA) and methoxyamine levels were essentially unaltered at any time of bed rest. Maximal changes in plasma were on the second day (D2): NE, 547 +/- 84 vs. 384 +/- 55 pg/ml; DA, 192 +/- 32 vs. 141 +/- 16 pg/ml; NS. After 24 h of bed rest, heart rate decreased from 71 +/- 1 to 63 +/- 3/min (P less than 0.01). Daily dynamic leg exercise [50% maximum O2 uptake (VO2 max)] used as a countermeasure did not alter the pattern of plasma CA during bed rest but resulted in a higher urinary NE excretion during postexercise recovery (+45% on D2; P less than 0.05). The data indicate no evident relationship between sympathoadrenal function and stimulation of cardiopulmonary receptors or neuroendocrine changes induced by central hypervolemia during head-down bed rest.  相似文献   

18.
We have presented a sensitive and relatively simple and inexpensive method for continuous sampling and determination of plasma catecholamines and a major dopamine metabolite, DOPAC. This method provides the basis for determination of the short-term magnitude of catecholamine response as well as the time course of such a response following several physical or psychological interventions. Resting levels of plasma catecholamines--norepinephrine 292 pg/ml, epinephrine 81 pg/ml and dopamine 29 pg/ml--are comparable to those obtained by other methods. Dopamine and free DOPAC were unaffected by physical or psychological interventions while norepinephrine was considerably increased by isometric handgrip, knee bends, and cold pressor and epinephrine increased during knee bends, mental arithmetic, cold pressor, and blood pressure measurement.  相似文献   

19.
The concentrations of calcium, magnesium and inorganic phosphorus were higher in foetal arterial plasma than in maternal jugular plasma in sheep examined between 90 and 145 days of gestation. During the same period the calcium and magnesium concentrations of foetal urine were usually less than amniotic fluid values which in turn were less than maternal plasma concentrations. In allantoic fluid, calcium concentrations were usually less and magnesium concentrations greater than maternal and foetal plasma values. A 2-5 fold increase in the calcium concentrations of allantoic fluid after superfical uterine surgery and in amniotic fluid from a group of foetuses that were exposed during operation, were considered to be artefacts of technique. Inorganic phosphorus concentrations in foetal urine, amniotic fluid and allantoic fluid were variable.  相似文献   

20.
E R Micalizzi  D T Pals 《Life sciences》1979,24(22):2071-2076
Measurement of plasma norepinephrine and epinephrine concentrations in the conscious, unrestrained rat yielded values of 138±10 and 55±8 pg/ml, respectively. Ganglionic blockade reduced basal norepinephrine levels without affecting plasma epinephrine levels. Adrenal demedullation reduced plasma epinephrine to undetectable levels (<20 pg/ml) and gave rise to an apparent compensatory increase in plasma norepinephrine levels. Adrenal demedullation in combination with ganglionic blockade reduced plasma norepinephrine to the same level as did ganglionic blockade alone. These observations indicated that the plasma epinephrine was of adrenal origin. Furthermore, under these experimental conditions, the results suggested that the major portion of the plasma norepinephrine was of neuronal origin. When specific destruction of the sympathetic nerve terminals without alteration of adrenal medullary function was accomplished with 6-hydroxydopamine, a fivefold increase in plasma epinephrine concentration was observed at 24 hours. Plasma norepinephrine levels at 24 hours were not significantly altered from the control levels by the 6-hydroxydopamine suggesting that the rodent adrenal medulla was capable of secreting substantial amounts of norepinephrine under these conditions. It was concluded that plasma norepinephrine concentrations reflect both sympathetic neuronal and adrenomedullary activity. However, in the absence of changes in plasma epinephrine, plasma norepinephrine appears to be an index of sympathetic neuron function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号