首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Department of Cell Biology at the Yale University School of Medicine was established in 1983. It was preceded by the Section of Cell Biology, which was formed in 1973 when George E. Palade and collaborators came to Yale from the Rockefeller University. Cell Biology at Yale had its origins in the Department of Anatomy that existed from the beginning of classes at the Medical Institution of Yale College in 1813. This article reviews the history of the Department of Anatomy at Yale and its evolution into Cell Biology that began with the introduction of histology into the curriculum in the 1860s. The formation and development of the Section and Department of Cell Biology in the second half of the 20th century to the present time are described. Biographies and research activities of the chairs and key faculty in anatomy and cell biology are provided.  相似文献   

2.
Edmund Beecher Wilson was born in Geneva, Illinois in 1856.He attended Antioch College, the University of Chicago, Yale,and Johns Hopkins (Ph.D. 1881). Most of his professional lifewas spent in the Zoology Department of Columbia University togetherwith his close friend, Thomas Hunt Morgan. They were dominantfigures in developing the Chromosome Theory of Heredity. Wilsonbegan his professional life as a conventional 19th century biologiststudying problems of systematics, morphology, and phylogeny.Soon he became a key figure in the newer experimental disciplinesof embryology, cytology, and heredity. He is remembered todaylargely for his superb synthesis of these three fields in TheCell in Development and Heredity. He died in 1939.  相似文献   

3.
As a graduate student with Professor Richard Setlow at Yale in the late 1950s, I studied the effects of ultraviolet and visible light on the syntheses of DNA, RNA, and protein in bacteria. I reflect upon my research in the Yale Biophysics Department, my subsequent postdoctoral experiences, and the eventual analyses in the laboratories of Setlow, Paul Howard-Flanders, and myself that constituted the discovery of the ubiquitous pathway of DNA excision repair in the early 1960s. I then offer a brief perspective on a few more recent developments in the burgeoning DNA repair field and their relationships to human disease.  相似文献   

4.
REVIEWS     
《The New phytologist》1936,35(1):94-100
Books Review in this article:
Forest Trees and Timbers of the British Empire. Part I. Some East African Coniferae and Leguminosae. By L. C halk , M.A., D.Phil., J. B urtt D avy , M.A., Ph.D. and H. E. D esch , B.SC.
Part II. Twenty West African Timber Trees. By L. C halk , M.A., D.Phil., J. B urtt D avy , M.A., Ph.D., H. E. D esch , B.SC, M.A. and A. C. H oyle , B.Sc, M.A.
Part III. Fifteen South African High Forest Timber Trees. By L. C halk , M.A., D.Phil., M. M. C hattaway , B.SC, M.A., J. B urtt D avy , M.A., Ph.D., F. S. L aughton , B.SC. and M. H. S cott , B.SC.
Colloids in Agriculture. By C. E. M arshall .
Flore Laurentienne. By F rère M arie -V ictorin , D.SC.
Plant Viruses. By K enneth M. S mith .
Plant Life: A Text-book of Botany. By D. B. S wingle .
Gardening in East Africa: A Practical Handbook. Edited by A. J. J ex -B lake , with a foreword by Sir A rthur W. H ill .
British Stem- and Leaf-Fungi (Coelomycetes). Vol. I. Sphaeropsidales. By W. B. G rove , M.A.  相似文献   

5.
After graduating from Mount Holyoke College in 1948 where I majored in experimental psychology I worked at the College for 2 years with the Johns Hopkins Thermophysiological Unit. My graduate work later at the University of Wisconsin, centering on sensory psychology, culminated in my 1955 PhD thesis on human dark adaptation. I continued work in sensory psychology later with Neal Miller at Yale and then moved to the John B. Pierce Foundation--a Yale affiliate--where I began the studies of thermoregulation that constitute the center of my scientific career. Those studies were largely--later wholly--conducted using microwave energy as a thermal load and were thus published in Bioelectromagnetics even as I played an active role in the Bioelectromagnetics Society. In the beginning this work was centered on the responses of Squirrel Monkeys to thermal loads. Later, serving as Senior Scientist at the Air Force Research Laboratory at San Antonio, I completed an extensive analysis of thermal regulation in humans. I consider this work of special note inasmuch as the extraordinary human thermoregulatory ability was surely among the attributes that were paramount in initially separating humans from the other anthropoid primates.  相似文献   

6.
Albert Harris was educated at The Norfolk Academy, Norfolk, Virginia, USA (1961). He then earned a Batchelor of Arts Degree in Biology from Swarthmore College, in Pennsylvania, USA (1965), followed by a Ph.D. in Biology (1971) from Yale University, where his Dissertation Advisor was the great John Phillip Trinkaus. He held a Damon-Runyon Postdoctoral Fellowship in Cancer Research in 1970-72, under Michael Abercrombie, FRS, at the Strangeways Research Laboratory of Cambridge University, England. Then he accepted a position as Assistant Professor in the Zoology Department of the University of North Carolina at Chapel Hill, N.C. USA. In 1977, he was promoted to Associate Professor of Zoology, and in 1983 was promoted to Full Professor of Biology. In Oct.-Nov. 1991 he was honored to be Distinguished Visiting Professor of Zoology at the University of California at Davis.  相似文献   

7.
Elaine and Gary Ostrander spent their youth in New Jersey and New York before heading to Nebraska for their teen years and eventually Washington State for High School and college, as their father moved around in library administration. Elaine was an undergraduate at the University of Washington, a graduate student at the Oregon Health Sciences University and a postdoc with James Wang at Harvard, studying DNA supercoiling. She next went to Berkeley, where she began the canine genome project, initiating the meiotic linkage map and working on human chromosome 21 at the Lawrence Berkeley National Labs. In 1993 she moved to the Fred Hutchinson Cancer Research Center where she is now a Member of the Divisions of Clinical Research and Human Biology. She is also an Affiliate Professor of Genome Sciences and Biology at the University of Washington, and heads the Program in Genetics at the Hutchinson Center. Gary completed his undergraduate degree in Biology at Seattle University, a M.S. degree at Illinois State University and a Ph.D at the University of Washington in Ocean and Fisheries Science. He went on to be a postdoc in the Department of Pathology at the University of Washington Medical School while being mentored by Senitroh Hakomori of the Fred Hutchinson Cancer Research Center and Eric Holmes of the Pacific Northwest Research Foundation. His work focused on using novel aspects of the biology of fishes to address fundamental questions about cancer. He subsequently held both faculty and administrative positions at Oklahoma State University. Since 1996, he has been at the Johns Hopkins University, where he currently holds academic appointments in the Departments of Biology and Comparative Medicine and is the Associate Provost for Research.  相似文献   

8.
George Oster is Professor of Biophysics, University of California, Berkeley. He received his B.S. at the U.S. Merchant Marine Academy and his Ph.D. at Columbia University. He began his career in biophysics as a postdoc at the Weizmann Institute under Aharon Katchalsky, where his research involved membrane biophysics and irreversible thermodynamics. His concern for environmental issues led him into population biology, which shaded into evolutionary biology and thence to developmental biology, cell biology and, most recently, protein motors and bacterial motility and pattern formation. His tools are mathematics, physics and computer simulation. He is currently a faculty member in the Departments of Molecular and Cellular Biology and the College of Natural Resources at Berkeley.  相似文献   

9.
Frank Slack received his B.Sc from the University of Cape Town in South Africa, before completing his Ph.D in molecular biology at Tufts University School of Medicine. He started work on microRNAs as a postdoctoral fellow in Gary Ruvkun’s laboratory at Harvard Medical School, where he co-discovered the second known microRNA, let-7. He is currently an Associate Professor in the Department of Molecular, Cellular and Developmental Biology at Yale University. The Slack laboratory studies the roles of microRNAs and their targets in development, disease and aging.  相似文献   

10.
I was trained as a physicist in graduate school. Hence, when I decided to go into the field of biophysics, it was natural that I concentrated on the effects of light on relatively simple biological systems, such as proteins. The wavelengths absorbed by the amino acid subunits of proteins are in the ultraviolet (UV). The wavelengths that affect the biological activities, the action spectra, also are in the UV, but are not necessarily parallel to the absorption spectra. Understanding these differences led me to investigate the action spectra for affecting nucleic acids, and the effects of UV on viruses and cells. The latter studies led me to the discovery of the important molecular nature of the damages affecting DNA (cyclobutane pyrimidine dimers) and to the discovery of nucleotide excision repair. Individuals with the genetic disease xeroderma pigmentosum (XP) are extraordinarily sensitive to sunlight-induced skin cancer. The finding, by James Cleaver, that their skin cells were defective in DNA repair strongly suggested that DNA damage was a key step in carcinogenesis. Such information was important for estimating the wavelengths in sunlight responsible for human skin cancer and for predicting the effects of ozone depletion on the incidence of non-melanoma skin cancer. It took experiments with backcross hybrid fish to call attention to the probable role of the longer UV wavelengths not absorbed by DNA in the induction of melanoma. These reflections trace the biophysicist's path from molecules to melanoma.  相似文献   

11.
The adequate location of wells in oil and environmental applications has a significant economic impact on reservoir management. However, the determination of optimal well locations is both challenging and computationally expensive. The overall goal of this research is to use the emerging Grid infrastructure to realize an autonomic self-optimizing reservoir framework. In this paper, we present a policy-driven peer-to-peer Grid middleware substrate to enable the use of the Simultaneous Perturbation Stochastic Approximation (SPSA) optimization algorithm, coupled with the Integrated Parallel Accurate Reservoir Simulator (IPARS) and an economic model to find the optimal solution for the well placement problem. Wolfgang Bangerth is a postdoctoral research fellow at both the Institute for Computational Engineering and Sciences, and the Institute for Geophyics, at the University of Texas at Austin. He obtained his Ph.D. in applied mathematics from the University of Heidelberg, Germany in 2002. He is the project leader for the deal.II finite element library (http://www.dealii.org). Wolfgang is a member of SIAM, AAAS, and ACM. Hector Klie obtained his Ph.D. degree in Computational Science and Engineering at Rice University, 1996, he completed his Master and undergraduate degrees in Computer Science at the Simon Bolivar University, Venezuela in 1991 and 1989, respectively. Hector Klie's main research interests are in the development of efficient parallel linear and nonlinear solvers and optimization algorithms for large-scale transport and flow of porous media problems. He currently holds the position of Associate Director and Senior Research Associate in the Center for Subsurface Modeling at the Institute of Computational Science and Engineering at The University of Texas at Austin. Dr. Klie is current member of SIAM, SPE and SEG. Vincent Matossian obtained a Masters in applied physics from the French Université Pierre et Marie Curie. Vincent is currently pursuing a Ph.D. degree in distributed systems at the Department of Electrical and Computer Engineering at Rutgers University under the guidance of Manish Parashar. His research interests include information discovery and ad-hoc communication paradigms in decentralized systems. Manish Parashar is Professor of Electrical and Computer Engineering at Rutgers University, where he also is director of the Applied Software Systems Laboratory. He received a BE degree in Electronics and Telecommunications from Bombay University, India and MS and Ph.D. degrees in Computer Engineering from Syracuse University. He has received the Rutgers Board of Trustees Award for Excellence in Research (2004–2005), NSF CAREER Award (1999) and the Enrico Fermi Scholarship from Argonne National Laboratory (1996). His research interests include autonomic computing, parallel & distributed computing (including peer-to-peer and Grid computing), scientific computing, software engineering. He is a senior member of IEEE, a member of the IEEE Computer Society Distinguished Visitor Program (2004–2007), and a member of ACM. Mary Fanett Wheeler obtained her Ph.D. at Rice University in 1971. Her primary research interest is in the numerical solutions of partial differential systems with applications to flow in porous media, geomechanics, surface flow, and parallel computation. Her numerical work includes formulation, analysis and implementation of finite-difference/finite-element discretization schemes for nonlinear, coupled PDE's as well as domain decomposition iterative solution methods. She has directed the Center for Subsurface Modeling, The University of Texas at Austin, since its creation in 1990. Dr. Wheeler is recepient of the Ernest and Virginia Cockrell Chair in Engineering and is Professor in the Department of Aerospace Engineering & Engineering Mechanics and in the Department of Petroleum & Geosystems Engineering of The University of Texas  相似文献   

12.
Avian visual sensitivity encompasses both the human visible range (400–700 nm) and also near‐ultraviolet (UV) wavelengths (320–400 nm) invisible to normal humans. I used reflectance spectrophotometry to assess variation in UV reflectance for yellow, orange and red plumage in 67 species of tanager (Passeriformes). Previous chemical studies, and my analysis of reflectance minima, suggest that carotenoids are the dominant pigments in yellow, orange and red tanager plumage. Spectra recorded over the range of wavelengths to which birds are sensitive (320–700 nm) were invariably bimodal, with both a plateau of high reflectance at longer (> 500 nm) wavelengths and a distinct secondary peak at UV (< 400 nm) wavelengths. Within this overall framework, variation in UV reflectance was expressed within well‐defined quantitative limits: (1) peak reflectance was always lower than the corresponding plateau of reflectance at longer visible wavelengths; (2) the intensity of peak reflectance declined steadily below 350 nm; (3) wavelengths of peak reflectance clustered between 350 and 370 nm. Significant correlations were detected between various measures of total reflectance in the UV and visible wavebands, but not between various measures of spectral location of UV and visible reflectance. I propose that the strong absorption band at short visible wavelengths (~ 380–550 nm) responsible for bimodal spectra of carotenoids in vitro is also responsible for bimodal reflectance by carotenoid‐based plumage colours. The construction of the UV and visible reflectance bands from different sides of this same absorbance band provides a mechanism for the observed covariation between UV and visible wavelengths. Lack of an association between the spectral locations of the UV and visible reflectance bands may result from the limited variation in spectral location of the UV band. These patterns suggest that plumage colours are subject to constraints, just as are more traditional morphological characters. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84 , 243–257.  相似文献   

13.
The Yale School of Medicine began accepting women as candidates for the degree of medicine in the fall of 1916. This decision was consistent with the trend in medical education at the time. While Yale was not the first prestigious Eastern medical school to admit women, joining Johns Hopkins (1893) and the University of Pennsylvania (1914), it was not one of the last. Columbia University College of Physicians and Surgeons admitted women a year later, but Harvard Medical School held out until 1945. The years 1916--1920 saw the number of women enrolled in medical school almost double. Yale''s decision to admit women seems to have been made with little resistance from the faculty. The final decision was made through the encouragement and financial help of Henry Farnam, a professor of economics at Yale, who agreed to pay for the women''s bathrooms. His daughter, Louise, was in the first class of women. At graduation she was awarded the highest scholastic honors, the Campbell Gold Prize. From Yale she travelled to the Yale-sponsored medical school in Changsha, China, where she became the first female faculty member, a position she held for twelve years. The impressions of Ella Clay Wakeman Calhoun, the only woman to graduate in the second class of women, are presented here. Since 1916 the Yale School of Medicine has undergone extensive physical and philosophical changes, developments in which women have participated.  相似文献   

14.
The Nerve Growth Factor (NGF) is the progenitor of a family of growth factors which is still expanding. The history of its discovery is very colorful; it is a rare combination of scientific reasoning, intuition, fortuities, and good luck. In addition, I believe that the collaboration of three scientists with very different backgrounds contributed to the success: I had grown up in a laboratory of experimental embryology, Dr. Levi-Montalcini came from neurology, and Dr. Stanley Cohen was from biochemistry. The decision where to begin the history of a discovery is always arbitrary. I shall give my reasons why I begin this story with my wing bud extirpations on chick embryos and the analysis of the effects of the operation on the development of spinal nerve centers, published in 1934. Of course, I am aware of the fact that the analysis of neurogenesis had been pioneered by Dr. R. G. Harrison and his students at Yale University since the beginning of this century. It should be mentioned that their experiments had been done on amphibian embryos. My own interest in problems of neurogenesis dates back to my Ph.D. thesis in the Zoology Department of Professor H. Spemann at the University of Freiburg in (the Federal Republic of) Germany; it dealt with the influence of the nervous system on the development of limbs in frog embryos. After I had obtained some inconclusive results I did the crucial experiment of producing nerveless legs. I removed the lumbar part of the spinal cord and the spinal ganglia before the outgrowth of nerve fibers. The nerveless legs developed normally in every respect, but the muscles atrophied eventually.  相似文献   

15.
Currently, there is a major gap in the knowledge that is needed to optimize the beneficial effects related to ultraviolet (UV) radiation at wavelengths that induce vitamin D(3) synthesis (UV(D3)) compared to reducing the biologically damaging overexposure to UV radiation. The aim of this study was to investigate the use of diffuse (radiation that is scattered from all directions) UV radiation to optimize exposures to UV(D3) radiation and maximize the reduction of exposure to UVA radiation. Data on global and diffuse solar UV-radiation spectra were collected at 10-min intervals in the Southern Hemisphere in the late spring and summer from 1 November 2006 to 28 February 2007. For a solar zenith angle (SZA) of approximately 5 degrees , the observed maximum UV(D3) irradiances were 0.80 W/m(2) and 0.46 W/m(2) for global and diffuse UV radiation, respectively. The observed maximum UVA irradiances were 79.0 W/m(2) and 36.2 W/m(2) for global and diffuse UV radiation, respectively. For diffuse UV radiation, the maximum ratio of vitamin D(3) to UVA radiation was 1.75% at a SZA of approximately 10 degrees , whereas the maximum ratio for global UV was 1.27% at 10 degrees . For SZAs of 25 degrees and less, more UV radiation is in the wavelength region contributing to vitamin D(3) synthesis (UV(D3)) than in the UVA region for diffuse UV radiation than for global UV radiation.  相似文献   

16.
The American Physiological Society (APS) and APS Council encourage the teaching of physiology at the undergraduate, graduate, and medical school levels to support the continued prominence of this area of science. One area identified by the APS Council that is of particular importance for the development of future physiologists (the "physiology pipeline") is the teaching of physiology and physiology-related topics at the undergraduate level. In this article, we describe the historical development and implementation of an undergraduate program offered through the Department of Physiology, a basic science department in the College of Medicine at the University of Arizona, culminating in a Bachelor of Science in Health Sciences degree with a major in Physiology. Moreover, we discuss the current Physiology curriculum offered at our institution and explain how this program prepares our students for successful entry into a variety of postbaccalaureate professional programs, including medical school and numerous other programs in health professions, and in graduate study in the Masters and Doctoral programs in biomedical sciences. Finally, we cover the considerable challenges that we have faced, and continue to face, in developing and sustaining a successful physiology undergraduate major in a college of medicine. We hope that the information provided on the Physiology major offered by the Department of Physiology in the College of Medicine at the University of Arizona will be helpful for individuals at other institutions who may be contemplating the development and implementation of an undergraduate program in Physiology.  相似文献   

17.
Mathematical models of a vector-borne infectious disease acting on a host population consisting of three genotypes which differ in susceptibility to, recovery from, and death due to the disease are presented and analyzed. Singular perturbation techniques are used to obtain a single differential equation describing the slow time evolution of gene frequencies.Karen Christine Beck died June 25, 1983 at home.Born February 8, 1952 in Madison, Wisconsin, She received a B.A. degree in 1974 from Luther College, Decorah, Iowa and a Ph.D. in mathematics in 1980 from the University of Iowa. Since that time she has been an instructor in the Mathematics Department at the University of Utah. She was to become an Assistant Professor at the University of Texas, Arlington, beginning Autumn, 1983. Dr. Beck's areas of specialization in mathematics were Mathematical Analysis and Mathematical Biology. She published numerous research articles that resolved various problems in these areas.  相似文献   

18.
Stomatal closure by ultraviolet radiation   总被引:5,自引:0,他引:5  
The effect of ultraviolet radiation (UV) (255–325 nm) on stomatal closure was investigated on tef [ Eragrostis tef (Zucc) Trotter] in the presence of white light (ca 50 ·mol m−2 s−1). The action spectrum showed that UV (ca 2 ·mol m−2 s−1, half band width about 10 nm) of 285 nm or shorter wavelengths was very efficient in causing stomatal closure. The effectiveness decreased sharply towards longer wavelengths. Radiation of 313 nm or longer wavelengths was practically without effect. Increasing UV intensity increased stomatal resistance. When stronger white light (5 to 9 times stronger than the one used during irradiation) was administered, stomates re-opened rapidly irrespective of whether the UV was on or off, although a subsequent gradual closing tendency was observed when the UV was on.  相似文献   

19.
Summary Protein bodies induced in tomato leaf cells by wounding were shown to contain proteinase Inhibitor I by using ferritin-labelled antibodies, fluorescein-labelled antibodies, and cytochrome C-labelled antibody fragments. Both pre-embedding and postembedding techniques were used. Nonspecific binding was least when p-formaldehyde was used as the initial fixative followed by treatment with cytochrome c-labelled antibody fragments.Abbreviations Fab antibody fragments - BSA bovine serum albumin - GMA glycol methacrylate - THB Tris-HCl buffer Taken in part from a doctoral (Ph.D.) dissertation submitted to Washington State University by Vivian V. Yang. This work was supported largely by NSF Grant GB-29614X (LKS) and in part by the United States Department of Agricultural Cooperative States Research Service Grant 316-15-30 (CAR), the National Science Foundation Grant GB-37972 (CAR), and the College of Agriculture Research Center, Washington State University, Pullman, WA 99163, Scientific Paper No. 4525, Project 1791.Program in Genetics and Department of Botany. To whom reprint requests should be sent.Department of Agricultural Chemistry and Program in Biochemistry and Biophysics.  相似文献   

20.
This paper is one of a series of papers in which I consider contemporary Yale medical education in general and the Yale Department of Epidemiology and Public Health in particular. It tells of the retirement in 1945 of C.-E.A. Winslow, Professor and Chairman of the Yale Department of Public Health since its inception in 1915; of the committees established by the dean of the School of Medicine and the president of the University, charged with determining the future direction of the department; and of the outcome, which, in 1945, proved favorable to Winslow's public health philosophy in contrast to the medical school's clinical needs and desires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号