首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecologically relevant genetic variation occurs in genes harbouring alleles that are adaptive in some environments but not in others. Analysis of this type of genetic variation in model organisms has made substantial progress, and is now being expanded to other species in order to better cover the diversity of plant life. Recent advances in connecting ecological and molecular studies in non-model species have been made with regard to edaphic and climatic adaptation, plant reproduction, life-history parameters and biotic interactions. New research avenues that increase biological complexity and ecological relevance by integrating ecological experiments with population genetic and functional genomic approaches provide new insights into the genetic basis of ecologically relevant variation.  相似文献   

2.
Although many studies provide examples of evolutionary processes such as adaptive evolution, balancing selection, deleterious variation and genetic drift, the relative importance of these selective and stochastic processes for phenotypic variation within and among populations is unclear. Theoretical and empirical studies from humans as well as natural animal and plant populations have made progress in examining the role of these evolutionary forces within species. Tentative generalizations about evolutionary processes across species are beginning to emerge, as well as contrasting patterns that characterize different groups of organisms. Furthermore, recent technical advances now allow the combination of ecological measurements of selection in natural environments with population genetic analysis of cloned QTLs, promising advances in identifying the evolutionary processes that influence natural genetic variation.  相似文献   

3.
4.
宾淑英  吴仲真  张鹤  林进添 《昆虫学报》2014,57(9):1094-1104
遗传变异与种群持续性及其进化潜力密切相关,而生物入侵导致种群遗传变异或遗传多样性的改变为研究自然界中各种生态和进化问题提供了理想模式。分子标记技术是调查种群遗传变异的重要工具,揭示了入侵种的入侵过程和结果,并预测未来的发生情况。本综述归纳了分子标记技术在昆虫入侵机制研究中的应用,以典型的研究个案为例,分别综述了分子标记技术在隐蔽入侵的监测应用,分子标记技术在重构入侵历史研究中的推算方式,分子标记技术在探索种群遗传变异与成功入侵机制方面取得的重要进展,并进一步介绍了高分辨率熔解曲线(high-resolution melting, HRM)分析在昆虫入侵研究中的应用前景。  相似文献   

5.
施永彬  李钧敏  金则新 《生态学报》2012,32(18):5846-5858
生态基因组学是一个整合生态学、分子遗传学和进化基因组学的新兴交叉学科。生态基因组学将基因组学的研究手段和方法引入生态学领域,通过将群体基因组学、转录组学、蛋白质组学等手段与方法将个体、种群及群落、生态系统不同层次的生态学相互作用整合起来,确定在生态学响应及相互作用中具有重要意义的关键的基因和遗传途径,阐明这些基因及遗传途径变异的程度及其生态和进化后果的特征,从基因水平探索有机体响应天然环境(包括生物与非生物的环境因子)的遗传学机制。生态基因组学的研究对象可以分为模式生物与非模式生物两大类。拟南芥、酿酒酵母等模式生物在生态基因组学领域发挥了重要作用。随着越来越多基因组学技术的开发与完善,越来越多的非模式生物生态基因组学的研究将为生态学的发展提供重要的理论与实践依据。生态基因组学最核心的方法包括寻找序列变异、研究基因差异表达和分析基因功能等方法。生态基因组学已广泛渗透到生态学的相关领域中,将会在生物对环境的响应、物种间的相互作用、进化生态学、全球变化生态学、入侵生态学、群落生态学等研究领域发挥更大的作用。  相似文献   

6.
BACKGROUND: The model plant Arabidopsis thaliana (Arabidopsis) shows a wide range of genetic and trait variation among wild accessions. Because of its unparalleled biological and genomic resources, the potential of Arabidopsis for molecular genetic analysis of this natural variation has increased dramatically in recent years. SCOPE: Advanced genomics has accelerated molecular phylogenetic analysis and gene identification by quantitative trait loci (QTL) mapping and/or association mapping in Arabidopsis. In particular, QTL mapping utilizing natural accessions is now becoming a major strategy of gene isolation, offering an alternative to artificial mutant lines. Furthermore, the genomic information is used by researchers to uncover the signature of natural selection acting on the genes that contribute to phenotypic variation. The evolutionary significance of such genes has been evaluated in traits such as disease resistance and flowering time. However, although molecular hallmarks of selection have been found for the genes in question, a corresponding ecological scenario of adaptive evolution has been difficult to prove. Ecological strategies, including reciprocal transplant experiments and competition experiments, and utilizing near-isogenic lines of alleles of interest will be a powerful tool to measure the relative fitness of phenotypic and/or allelic variants. CONCLUSIONS: As the plant model organism, Arabidopsis provides a wealth of molecular background information for evolutionary genetics. Because genetic diversity between and within Arabidopsis populations is much higher than anticipated, combining this background information with ecological approaches might well establish Arabidopsis as a model organism for plant evolutionary ecology.  相似文献   

7.
Documenting the causes and consequences of intraspecific variation forms the foundation of much of evolutionary ecology. In this Perspectives piece, we review the importance of individual variation in ecology and evolution, argue that contemporary phycology often overlooks this foundational biological unit, and highlight how this lack of attention has potentially constrained our understanding of seaweeds. We then provide some suggestions of promising but underrepresented approaches, for instance: conducting more studies and analyses at the level of the individual; designing studies to evaluate heritability and genetic regulation of traits; and measuring associations between individual variation in functional traits and ecological outcomes. We close by highlighting areas of phycological research (e.g., population biology, ecology, aquaculture, climate change management) that could benefit immediately from including a focus on individual variation. Algae, for their part, provide us with a powerful and diverse set of ecological and evolutionary traits to explore these topics. There is much to be discovered.  相似文献   

8.
Deciphering the mechanisms that underlie morphological and functional diversity is essential for understanding how organisms adapt to their environment. Interestingly, phenotypic divergence does not necessarily correspond to the geographic and genetic separation between populations. Here, we explored the morphological and functional divergence among populations of two genetically differentiated clades of the Moorish gecko, Tarentola mauritanica. We used linear and geometric morphometrics to quantify morphological variation and investigated how it translates into biting and CLIMBING PERFORMANCE, to better understand the mechanisms potentially underlying population and lineage divergence. We found marked morphological differences between clades, both in body size and head shape. However, much of this differentiation is more strongly related to local variation between populations of the same clade, suggesting that recent ecological events may be more influential than deep evolutionary history in shaping diversity patterns in this group. Despite a lack of association between morphology and functional diversification in the locomotor system of the Moorish gecko, straightforward links are observed between head morphology and biting performance, providing more hints on the possible underlying causes. Indeed, variation in bite force is mostly determined by size variation and sexual dimorphism, and differences between the two clades concern how sexual variation is expressed, reinforcing the idea that both social and ecological factors contribute in shaping differentiation. Interestingly, the individuals from the islets off the coast of Murcia exhibit particular morphological and functional traits, which suggests that the ecological conditions related to insularity may drive the phenotypic differentiation of this population.  相似文献   

9.
With the advent of molecular genetic mapping, it is possible to study the genetic basis of natural heritable variation in new ways. Here, three potential uses of molecular genetic mapping in plant ecology and evolutionary biology are discussed; (1) accurate estimation of genetic parameters, (2) understanding speciation and/or adaptation, and (3) investigating whole genome organization. Basic methods for mapping genes and important mapping strategies are outlined. Recent studies are introduced to illustrate progress so far in applying the new methods in ecological and evolutionary research.  相似文献   

10.
The plant group Solanum section Lycopersicon (the clade containing the domesticated tomato and its wild relatives) is ideal for integrating genomic tools and approaches into ecological and evolutionary research. Wild species within Lycopersicon span broad morphological, physiological, life history, mating system, and biochemical variation, and are separated by substantial, but incomplete postmating reproductive barriers, making this an ideal system for genetic analyses of these traits. This ecological and evolutionary diversity is matched by many logistical advantages, including extensive historical occurrence records for all species in the group, publicly available germplasm for hundreds of known wild accessions, demonstrated experimental tractability, and extensive genetic, genomic, and functional tools and information from the tomato research community. Here I introduce the numerous advantages of this system for Ecological and Evolutionary Functional Genomics (EEFG), and outline several ecological and evolutionary phenotypes and questions that can be fruitfully tackled in this system. These include biotic and abiotic adaptation, reproductive trait evolution, and the genetic basis of speciation. With the modest enhancement of some research strengths, this system is poised to join the best of our currently available model EEFG systems.  相似文献   

11.
Dissecting the genetic control of variation in complex traits, such as disease resistance and agricultural-product quality, remains very challenging. Farm animals are now well placed to bridge the gap between human biology and traditional model species. Livestock species share with model species the benefits of controlled breeding, and their biology is often much closer to that of humans. Genetic research in model species focuses on differences between homogenous lines, whereas genetic research in humans focuses on genetic variation within populations. Livestock genetics has the strengths of both human and model-species genetics because researchers can exploit both the abundant genetic variation between divergent breeds and the variation that is segregating within breeds. Therefore, livestock genomics fills the void where the genetics of model species proves intractable or where model species are not a good proxy for human biology.  相似文献   

12.
The field of molecular biology is advancing fast with new powerful technologies, sequencing methods and analysis software being developed constantly. Commonly used tools originally developed for research on humans and model species are now regularly used in ecological and evolutionary research. There is also a growing interest in the causes and consequences of epigenetic variation in natural populations. Studying ecological epigenetics is currently challenging, especially for vertebrate systems, because of the required technical expertise, complications with analyses and interpretation, and limitations in acquiring sufficiently high sample sizes. Importantly, neglecting the limitations of the experimental setup, technology and analyses may affect the reliability and reproducibility, and the extent to which unbiased conclusions can be drawn from these studies. Here, we provide a practical guide for researchers aiming to study DNA methylation variation in wild vertebrates. We review the technical aspects of epigenetic research, concentrating on DNA methylation using bisulfite sequencing, discuss the limitations and possible pitfalls, and how to overcome them through rigid and reproducible data analysis. This review provides a solid foundation for the proper design of epigenetic studies, a clear roadmap on the best practices for correct data analysis and a realistic view on the limitations for studying ecological epigenetics in vertebrates. This review will help researchers studying the ecological and evolutionary implications of epigenetic variation in wild populations.  相似文献   

13.
Understanding the genetics of how organisms adapt to changing environments is a fundamental topic in modern evolutionary ecology. The field is currently progressing rapidly because of advances in genomics technologies, especially DNA sequencing. The aim of this review is to first briefly summarise how next generation sequencing (NGS) has transformed our ability to identify the genes underpinning adaptation. We then demonstrate how the application of these genomic tools to ecological model species means that we can start addressing some of the questions that have puzzled ecological geneticists for decades such as: How many genes are involved in adaptation? What types of genetic variation are responsible for adaptation? Does adaptation utilise pre-existing genetic variation or does it require new mutations to arise following an environmental change?  相似文献   

14.
15.
Understanding the biogeographic and phylogenetic basis to interspecific differences in species’ functional traits is a central goal of evolutionary biology and community ecology. We quantify the extent of phylogenetic influence on functional traits and life‐history strategies of Australian freshwater fish to highlight intercontinental differences as a result of Australia's unique biogeographic and evolutionary history. We assembled data on life history, morphological and ecological traits from published sources for 194 Australian freshwater species. Interspecific variation among species could be described by a specialist–generalist gradient of variation in life‐history strategies associated with spawning frequency, fecundity and spawning migration. In general, Australian fish showed an affinity for life‐history strategies that maximise fitness in hydrologically unpredictable environments. We also observed differences in trait lability between and within life history, morphological and ecological traits where in general morphological and ecological traits were more labile. Our results showed that life‐history strategies are relatively evolutionarily labile and species have potentially evolved or colonised in freshwaters frequently and independently allowing them to maximise population performance in a range of environments. In addition, reproductive guild membership showed strong phylogenetic constraint indicating that evolutionary history is an important component influencing the range and distribution of reproductive strategies in extant species assemblages. For Australian freshwater fish, biogeographic and phylogenetic history contribute to broad taxonomic differences in species functional traits, while finer scale ecological processes contribute to interspecific differences in smaller taxonomic units. These results suggest that the lability or phylogenetic relatedness of different functional traits affects their suitability for testing hypothesis surrounding community level responses to environmental change.  相似文献   

16.
Understanding the local and regional patterns of species distributions has been a major goal of ecological and evolutionary research. The notion that these patterns can be understood through simple quantitative rules is attractive, but while numerous scaling laws exist (e.g., metabolic, fractals), we are aware of no studies that have placed individual traits and community structure together within a genetics based scaling framework. We document the potential for a genetic basis to the scaling of ecological communities, largely based upon our long-term studies of poplars (Populus spp.). The genetic structure and diversity of these foundation species affects riparian ecosystems and determines a much larger community of dependent organisms. Three examples illustrate these ideas. First, there is a strong genetic basis to phytochemistry and tree architecture (both above- and belowground), which can affect diverse organisms and ecosystem processes. Second, empirical studies in the wild show that the local patterns of genetics based community structure scale up to western North America. At multiple spatial scales the arthropod community phenotype is related to the genetic distance among plants that these arthropods depend upon for survival. Third, we suggest that the familiar species-area curve, in which species richness is a function of area, is also a function of genetic diversity. We find that arthropod species richness is closely correlated with the genetic marker diversity and trait variance suggesting a genetic component to these curves. Finally, we discuss how genetic variation can interact with environmental variation to affect community attributes across geographic scales along with conservation implications.  相似文献   

17.
A novel genealogical approach to neutral biodiversity theory   总被引:9,自引:3,他引:6  
Current neutral theory in community ecology views local biodiversity as a result of the interplay between speciation, extinction and immigration. Simulations and a mean‐field approximation have been used to study this neutral theory. As simulations have limitations of convergence and the mean‐field approximation ignores dependencies between species’ abundances when applied to species‐abundance data, there is still no final conclusion whether the neutral theory or the traditional lognormal model describes community structure best. We present a novel analytical framework, based on the genealogy of individuals in the local community, to overcome the problems of previous approaches, and show, using Bayesian statistics, that the lognormal model provides a slightly better fit to the species‐abundance distribution of a much‐discussed tropical tree community. A key feature of our approach is that it shows the tight link between genetic and species diversity, which creates important perspectives to future integration of evolutionary and community ecological theory.  相似文献   

18.
Despite the tremendous success of Arabidopsis thaliana, no single model can represent the vast range of form that is seen in the approximately 250,000 existing species of flowering plants (angiosperms). Here, we consider the history and future of an alternative angiosperm model--the snapdragon Antirrhinum majus. We ask what made Antirrhinum attractive to the earliest students of variation and inheritance, and how its use led to landmark advances in plant genetics and to our present understanding of plant development. Finally, we show how the wide diversity of Antirrhinum species, combined with classical and molecular genetics--the two traditional strengths of Antirrhinum--provide an opportunity for developmental, evolutionary and ecological approaches. These factors make A. majus an ideal comparative angiosperm.  相似文献   

19.
20.
Mosquitoes are the major arthropod vectors of human diseases such as malaria and viral encephalitis. However, each mosquito species does not transmit every pathogen, owing to reasons that include specific evolutionary histories, mosquito immune system structure, and ecology. Even a competent vector species for a pathogen displays a wide range of variation between individuals for pathogen susceptibility, and therefore efficiency of disease transmission. Understanding the molecular and genetic mechanisms that determine heterogeneities in transmission efficiency within a vector species could help elaborate new vector control strategies. This review discusses mechanisms of host-defense in Anopheles gambiae, and sources of genetic and ecological variation in the operation of these protective factors. Comparison is made between functional studies using Plasmodium or fungus, and we call attention to the limitations of generalizing gene phenotypes from experiments done in a single genetically simple colony.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号