首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When Streptococcus bovis JB1 was repeatedly transferred in a medium that contained the non-metabolizable glucose analog, 2-deoxyglucose, it lost its phosphotransferase system (PTS) for glucose but was still able to take up glucose via a facilitated diffusion mechanism. The wild type (JB1) had an inducible enzyme II lactose, but the mutant (JB12DG) had a constitutive lactose PTS. JB12DG was no longer able to exclude lactose when it was provided with glucose, but it retained its ability to expel a non-metabolizable lactose analog. Because JB12DG could utilize glucose and lactose simultaneously and grow in a non-diauxic fashion, it appeared that inducer expulsion was not an important catabolite regulatory mechanism. Based on these results, inducer expulsion may be an artifact of non-metabolizable sugars.  相似文献   

2.
Twenty strains of Streptococcus bovis grew more slowly on lactose (1.21 ± 0.12 h−1) than on glucose (1.67 ± 0.12 h−1), and repeated transfers or prolonged growth in continuous culture (more than 200 generations each) did not enhance the growth rate on lactose. Lactose transport activity was poorly correlated with growth rate, and slow growth could not be explained by the ATP production rate (catabolic rate). Batch cultures growing on lactose always had less␣intracellular fructose 1,6-bisphosphate (Fru1,6P 2) than cells growing on glucose (6.6 mM compared to 16.7 mM), and this difference could be explained by the pathway of carbon metabolism. Glucose and the glucose moiety of lactose were metabolized by the Embden-Meyerhoff-Parnas (EMP) pathway, but the galactose moiety of lactose was catabolized by the tagatose pathway, a scheme that by-passed Fru1,6P 2. A mutant capable of co-metabolizing lactose and glucose grew more rapidly when glucose was added, even though the total rate of hexose fermentation did not change. Wild-type S. bovis grew rapidly with galactose and melibiose, but these galactose-containing sugars were activated by galactokinase and catabolized via EMP. On the basis of these results, rapid glycolytic flux through the EMP pathway is needed for the rapid growth (more than 1.2 h−1) of S.␣bovis. Received: 3 June 1997 / Received revision: 10 September 1997 / Accepted: 6 January 1998  相似文献   

3.
4.
Fusarium oxysporum var. lini (ATCC 10960) formed a facilitated diffusion system for glucose (Ks, about 10 mM) when grown under repressed conditions. Under conditions of derepression, the same system was present together with a high-affinity (Ks, about 40 μM) active system. The maximum velocity of the latter was about 5% of that of the facilitated diffusion system. The high-affinity system was under the control of glucose repression and glucose inactivation. When lactose was the only carbon source in the medium, a facilitated diffusion system for lactose was found (Ks, about 30 mM).  相似文献   

5.
Summary Cells ofCandida shehatae repressed by growth in glucose- or D-xylose-medium produced a facilitated diffusion system that transported glucose (K s±2 mM,V max±2.3 mmoles g−1 h−1),d-xylose (K s±125 mM,V max±22.5 mmoles g−1 h−1) and D-mannose, but neither D-galactose norl-arabinose. Cells derepressed by starvation formed several sugar-proton symports. One proton symport accumulated 3-0-methylglucose about 400-fold and transported glucose (K s±0.12 mM,V max ± 3.2 mmoles g−1 h−1) andd-mannose, a second proton symport transportedd-xylose (K s± 1.0 mM,V max 1.4 mmoles g−1 h−1) andd-galactose, whilel-arabinose apparently used a third proton symport. The stoicheiometry was one proton for each molecule of glucose or D-xylose transported. Substrates of one sugar proton symport inhibited non-competitively the transport of substrates of the other symports. Starvation, while inducing the sugar-proton symports, silenced the facilitated diffusion system with respect to glucose transport but not with respect to the transport of D-xylose, facilitated diffusion functioning simultaneously with thed-xylose-proton symport.  相似文献   

6.
To clarify the control of glycolysis and the fermentation pattern in Streptococcus bovis, the molecular and enzymatic properties of NAD+-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were examined. The GAPDH gene (gapA) was found to cluster with several others, including those that encode phosphoglycerate kinase and translation elongation factor G, however, gapA was transcribed in a monocistronic fashion. Since biochemical properties, such as optimal pH and affinity for glyceraldehyde-3-phosphate (GAP), were not very different between GAPDH- and NADP+-specific glyceraldehyde-3-phosphate dehydrogenase (GAPN), the flux from GAP may be greatly influenced by the relative amounts of these two enzymes. Using S. bovis JB1 as a parent, JB1gapA and JB1ldh, which overproduce GAPDH and lactate dehydrogenase (LDH), respectively, were constructed to examine the control of the glycolytic flux and lactate production. There were no significant differences in growth rates and formate-to-lactate ratios among JB1, JB1gapA, and JB1ldh grown on glucose. When grown on lactose, JB1ldh showed a much lower formate-to-lactate ratio than JB1gapA, which showed the highest NADH-to-NAD+ ratio. However, growth rates did not differ among JB1, JB1gapA, and JB1ldh. These results suggest that GAPDH is not involved in the control of the glycolytic flux and that lactate production is mainly controlled by LDH activity.  相似文献   

7.
Fructose transport in lactococci is mediated by two phosphotransferase systems (PTS). The constitutive mannose PTS has a broad specificity and may be used for uptake of fructose with a fructose saturation constant (KFru) of 0.89 mM, giving intracellular fructose 6-phosphate. The inducible fructose PTS has a very small saturation constant (KFru, <17 μM), and the fructose 1-phosphate produced enters the Embden-Meyerhof-Parnas (EMP) pathway as fructose 1,6-diphosphate. Growth in batch cultures of Lactococcus lactis subsp. cremoris FD1 in a yeast extract medium with fructose as the only sugar is poor both with respect to specific growth rate and biomass yield, whereas the specific lactic acid production rate is higher than those in similar fermentations on other sugars metabolized via the EMP pathway, e.g., glucose. In fructose-limited chemostat cultures, the biomass concentration exhibits a strong correlation with the dilution rate, and starting a continuous culture at the end of a batch fermentation leads to large and persistent oscillations in the biomass concentration and specific lactic acid production rate. Two proposed mechanisms underlying this strange growth pattern follow. (i) Fructose transported via the fructose PTS cannot be converted into essential biomass precursors (glucose 6-phosphate or fructose 6-phosphate), because L. lactis subsp. cremoris FD1 is devoid of fructose 1,6-diphosphatase activity. (ii) The fructose PTS apparently produces a metabolite (presumably fructose 1-phosphate) which exerts catabolite repression of both mannose PTS and lactose PTS. Since the repressed mannose PTS and lactose PTS are shown to have identical maximum molar transport rates, the results indicate that it is the general PTS proteins which are repressed.  相似文献   

8.
Streptococcus bovis HC5 produces a broad spectrum lantibiotic (bovicin HC5), but S. bovis JB1 does not have antimicrobial activity. Preliminary experiments revealed an anomaly. When S. bovis JB1 cells were washed in stationary phase S. bovis HC5 cell-free culture supernatant, the S. bovis JB1 cells were subsequently able to inhibit hyper-ammonia producing ruminal bacteria (Clostridium sticklandii, Clostridium aminophilum and Peptostreptococcus anaerobius). Other non-bacteriocin producing S. bovis strains also had the ability to bind and transfer semi-purified bovicin HC5. Bovicin HC5 that was bound to S. bovis JB1 was much more resistant to Pronase E than cell-free bovicin HC5, but it could be inactivated if the incubation period was 24 h. Acidic NaCl treatment (100 mM, pH 2.0) liberates half of the bovicin HC5 from S. bovis HC5, but it did not prevent bovicin HC5 from binding to S. bovis JB1. Acidic NaCl liberated some bovicin HC5 from S. bovis JB1, but the decrease in activity was only 2-fold. Bovicin HC5 is a positively charged peptide, and the ability of S. bovis JB1 to bind bovicin HC5 could be inhibited by either calcium or magnesium (100 mM). Acidic NaCl-treated S. bovis JB1 cells were unable to accumulate potassium, but they were still able to bind bovicin HC5 and prevent potassium accumulation by untreated S. bovis JB1 cells. Based on these results, bovicin HC5 bound to S. bovis JB1 cells still acts as a pore-forming lantibiotic.  相似文献   

9.
Lactose transport was studied inKluyveromyces fragilis grown in lactose-limited chemostat cultures. Kinetic parameters were determined using a method based on genetic population evolution. Lactose transport was carried out via three carriers characterized respectively byK m of 0.1 mM, 3 mM and 15.5 mM. The synthesis of these lactose carriers and their capacity (V max) are dependent on the dilution rate (D). At D=0.12 h–1, the high affinity transporter is prominent. For intermediate dilution rate, only the high and the medium affinity systems are present. In cells growing at D=0.4 h–1, these carriers are absent but instead, the low affinity transporter is present. The effect on lactose transport of such metabolic inhibitors as CCCP, a proton ionophore, and Antimycin A, an energy inhibitor, were also investigated. The high affinity system is the most sensitive to the effect of these inhibitors. Lactose transport through this carrier is probably a mechanism dependent on the proton motive force.  相似文献   

10.
Lactose was fermented but not assimilated by the strain Bifidobacterium bifidum DSM 20082. The sugar uptake was measured with lactose 14C. K m and V max values were respectively 2.6 mM and 12.11 nmol/min/mg of cell protein. The lactose transport system and the β-D-galactosidase were stimulated when the cells were grown with lactose, but isopropyl-β-D-thiogalactopyranoside had no effect. Lactose uptake was inhibited by compounds which interfered with proton and metal ionophore. Na+, Li+, or K+ did not affect incorporation of lactose. Furthermore, the lactose uptake decreased when an inhibitor of ATP synthesis was used. From the results of this study, the strain contained an active lactose transport system, probably a proton symport as described for Escherichia coli but with a different regulation system.  相似文献   

11.
A novel heterodimeric β-galactosidase with a molecular mass of 105 kDa was purified from crude cell extracts of the soil isolate Lactobacillus pentosus KUB-ST10-1 using ammonium sulphate fractionation followed by hydrophobic interaction and affinity chromatography. The electrophoretically homogenous enzyme has a specific activity of 97 UoNPG/mg protein. The Km, kcat and kcat/Km values for lactose and o-nitrophenyl-β-D-galactopyranoside (oNPG) were 38 mM, 20 s-1, 530 M-1·s-1 and 1.67 mM, 540 s-1, 325 000 M-1·s-1, respectively. The temperature optimum of β-galactosidase activity was 60–65°C for a 10-min assay, which is considerably higher than the values reported for other lactobacillal β-galactosidases. Mg2+ ions enhanced both activity and stability significantly. L. pentosus β-galactosidase was used for the production of prebiotic galacto-oligosaccharides (GOS) from lactose. A maximum yield of 31% GOS of total sugars was obtained at 78% lactose conversion. The enzyme showed a strong preference for the formation of β-(1→3) and β-(1→6) linkages, and the main transgalactosylation products identified were the disaccharides β-D-Galp-(1→6)-D -Glc, β-D-Galp-(1→3)-D -Glc, β-D -Galp-(1→6)-D -Gal, β-D -Galp-(1→3)-D -Gal, and the trisaccharides β-D -Galp-(1→3)-D -Lac, β-D -Galp-(1→6)-D -Lac.  相似文献   

12.
The objectives of this study were to examine the effects of chlorhexidine diacetate on growth and L-lactate production by Streptococcus bovis JB1 as well as the effects of this antimicrobial compound on the mixed ruminal microorganism fermentation. Addition of 1.8 μM chlorhexidine diacetate to glucose medium resulted in a lag in growth by S. bovis JB1, and growth was completely inhibited in the presence of 3.6, 9.0, and 18 μM chlorhexidine. When 6.2 μM chlorhexidine diacetate was added to glucose medium after 2 h of incubation, glucose utilization and L-lactate production by S. bovis JB1 were reduced. Phosphoenolpyruvate-dependent phosphorylation of 14C-glucose by toluene-treated cells of S. bovis JB1 was inhibited by increasing concentrations (1.8 to 18 μM) of chlorhexidine, whereas only the 18 μM concentration reduced the membrane potential (ΔΨ). Chlorhexidine diacetate was a potent inhibitor of L-lactate and methane production from glucose fermentation by mixed ruminal microorganisms. However, because chlorhexidine also decreased acetate and propionate concentrations and increased ammonia concentrations in mixed-culture incubations, this antimicrobial compound may have limited application as a ruminant feed additive. Received: 4 November 1997 / Accepted: 22 December 1997  相似文献   

13.
2-Deoxy-d -glucose (2 DG) entered synaptosomes (from rat brain) by a high-affinity, Na+-independent glucose transport system with a Km, of 0.24 mM. 3-O-methyl-glucose, D-glucose, and phloretin were competitive inhibitors of 2-DG transport with Ki's of 7 mM, 64 μM, and 0·75 μM, respectively. Insulin was without effect. 2-DG uptake was also saturable at high substrate concentrations with an apparent low affinity Km, of 75 mM, where the Kl, for glucose was 17.5 mM. We are not certain whether the rate-limiting step for the low-affinity uptake system is attributable to transport or phosphorylation. However, the high-affinity glucose transport system probably is a special property of neuronal cell membranes and could be useful in helping to distinguish separated neurons from glial cells.  相似文献   

14.
The NIAH 1102 strain of Megasphaera elsdenii utilized lactate in preference to glucose when the two substrates were present. Even when lactate was supplied to cells fermenting glucose, the cells switched substrate utilization from glucose to lactate and did not utilize glucose until lactate decreased to a low concentration (1 to 2 mM). Since substrate utilization was shifted gradually without intermittence, typical diauxic growth was not seen. The cyclic AMP content did not rise markedly with the shift in substrate utilization, suggesting that this nucleotide is not involved in the regulation of the shift. It was unlikely that propionate was produced from glucose, which was explicable by the fact that lactate racemase activity dropped rapidly with the exhaustion of lactate and cells actively fermenting glucose did not possess this enzyme. A coculture experiment indicated that M. elsdenii NIAH 1102 is overcome by Streptococcus bovis JB1 in the competition for glucose, mainly because M. elsdenii NIAH 1102 is obliged to utilize lactate produced by S. bovis JB1; i.e., glucose utilization by M. elsdenii NIAH 1102 is suppressed by the coexistence of S. bovis JB1.  相似文献   

15.
Summary A nisin-sensitive strain ofPediococcus sp possessed an uptake system for K+ which was apparently dependent on metabolic energy and ATPase activity. K+ uptake rate was dependent on the glucose and K+ concentrations and showed approximately Michaelis-Menten kinetics with respect to both of these variables with Kt values of 1.2 mM and 599 μM respectively. The presence of nisin inhibited K+ uptake with the percentage inhibition proportional to the nisin activity,. Total inhibition occurred at between 4.5 and 5.0 IU ml−1 and the MIC was approximately 0.6 IU ml−1.  相似文献   

16.
Streptococcus bovis HC5 inhibits a variety of S. bovis strains and other Gram-positive bacteria, but factors affecting this activity had not been defined. Batch culture studies indicated that S. bovis HC5 did not inhibit S. bovis JB1 (a non-bacteriocin-producing strain) until glucose was depleted and cells were entering stationary phase, but slow-dilution-rate, continuous cultures (0.2 h−1) had as much antibacterial activity as stationary-phase batch cultures. Because the activity of continuous cultures (0.2–1.2 h−1) was inversely related to the glucose consumption rate, it appeared that the antibacterial activity was being catabolite repressed by glucose. When the pH of continuous cultures (0.2 h−1) was decreased from 6.7 to 5.4, antibacterial activity doubled, but this activity declined at pH values less than 5.0. Continuous cultures (0.2 h−1) that had only ammonia as a nitrogen source had antibacterial activity, and large amounts of Trypticase (10 mg ml−1) caused only a 2.0-fold decline in the amount of HC5 cell-associated protein that was needed to prevent S. bovis JB1 growth. Because S. bovis HC5 was able to produce antibacterial activity over a wide range of culture conditions, there is an increased likelihood that this activity could have commercial application. Received: 6 February 2002 / Accepted: 27 March 2002  相似文献   

17.
Cells dissociated from the R3230AC mammary adenocarcinoma from intact and diabetic rats were examined for insulin binding and glucose transport. The Kd for insulin binding, ~ 10?10 M, was similar in all tumors studied. However, the apparent number of receptor sites per cell increased in cells from diabetic rats. Kinetic analysis of 3-0-methyl glucose (3-OMG) entry showed both diffusional and passive carrier characteristics. Insulin (4 × 10?9 M) in vitro did not affect diffusional entry, whereas the hormone altered the passive carrier system, as reflected by an increase in Km and Vmax. Insulin decreased initial velocity of glucose transport at 4–6 mM glucose levels but increased initial velocity of glucose transport at 20 mM glucose. An explanation of the role of insulin on tumor growth in vivo from effects on glucose transport in vitro is proposed.  相似文献   

18.
When Corynebacterium glutamicum is grown with a sufficient nitrogen supply, urea crosses the cytoplasmic membrane by passive diffusion. A permeability coefficient for urea diffusion of 9 × 10–7 cm s–1 was determined. Under conditions of nitrogen starvation, an energy-dependent urea uptake system was synthesized. Carrier-mediated urea transport was catalyzed by a secondary transport system linked with proton motive force. With a K m for urea of 9 μM, the affinity of this uptake system was much higher than the affinity of urease towards its substrate (K m approximately 55 mM urea). The maximum uptake velocity depended on the expression level and was relatively low [2–3.5 nmol min–1 (mg dry wt.)–1]. Received: 11 August 1997 / Accepted: 2 December 1997  相似文献   

19.
The glucose analog 5-thio-d-glucose, a potent inhibitor of glucose transport across membranes, was examined as an acceptor and/or inhibitor of lactose synthetase (UDP-galactose: D-glucose 1-galactosyltransferase, EC 2.4.1.22). Thioglucose was an effective acceptor for lactose synthetase with a Km of 7.4 mM. Under identical conditions the Km for D-glucose in this reaction was 5.4 mM. Thioglucose was 45 to 50% as effective an acceptor as D-glucose. Thioglucose acted as a pseudo substrate having a different Km and Vmax. Thus, thioglucose could be considered to the be a competitive substrate for lactose synthetase. thetase. The product of the lactose synthetase reaction with thioglucose as an acceptor had a thin-layer chromatographic retardation factor slightly higher than that for lactose. Upon treatment of the reaction product with β-galactosidase, galactose and thioglucose were released. These observations suggest that the product of the lactose synthetase reaction with thioglucose was thiolactose.  相似文献   

20.
Summary Lactic acid grown cells of the yeast Candida utilis transported lactate by an accumulative electroneutral proton-lactate symport with a proton-lactate stoicheiometry of 1:1. The accumulation ratio at pH 5.5 was about twenty. The symport accepted the following monocarboxylates (K svalues at 25°C, pH 5.5 in brackets): d-lactate (0.06 mM), l-lactate (0.06 mM), pyruvate (0.03 mM), propionate (0.05 mM) and acetate (0.1 mM). The system was inducible and was subject to glucose repression. The affinity of the symport for lactate was not affected by pH over the range 3–6, while the maximum transport velocity was strongly pH dependent, its optimum pH being around pH 5. Undissociated lactic acid entered the cells by simple diffusion. The permeability for the undissociated acid increased exponentially with pH, the diffusion constant increasing 35-fold when the pH was increased from 3 to 5.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号