首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolism of n-decane by a Pseudomonas   总被引:1,自引:1,他引:0  
The growth of a Pseudomonas on n-decane was found to produce stearic acid, oleic acid, palmitic acid, palmitoleic acid, decanoic acid, octanoic acid, beta-hydroxydecanoic acid, beta-hydroxyoctanoic acid, beta-hydroxyhexanoic acid and beta-hydroxyadipic acid. Small amounts of n-decanamide and n-valeramide were also isolated. The effects of nitrogen and oxygen limitation on the formation of these products in continuous fermentations is reported.  相似文献   

2.
3.
1) A bacterium capable of growing aerobically with caffeine (1,3,7-trimethylxanthine) as sole source of carbon and nitrogen was isolated from soil. The morphological and physiological characteristics of the bacterium were examined. The organism was identified as a strain of Pseudomonas putida and is referred to as Pseudomonas putida C1. 15 additional caffeine-degrading bacteria were isolated, and all of them were also identified as Pseudomonas putida strains. The properties of the isolates are discussed in comparison with 6 Pseudomonas putida strains of the American Type Culture Collection. 2) The degradation of caffeine by Pseudomonas putida C1 was investigated; the following 14 metabolites were identified: 3,7-dimethylxanthine (theobromine), 1,7-dimethylxanthine, 7-methylxanthine, xanthine, 3,7-dimethyluric acid, 1,7-dimethyluric acid, 7-methyluric acid, uric acid, allantoin, allantoic acid, ureidoglycolic acid, glyoxylic acid, urea, and formaldehyde. Formaldehyde has been demonstrated to be the product of oxidative N-demethylation mediated by an inducible demethylase. A pathway of caffeine degradation is proposed.  相似文献   

4.
The metabolism of p-fluorobenzoic acid by a Pseudomonas sp   总被引:5,自引:0,他引:5  
  相似文献   

5.
The metabolism of d-glucarate by Pseudomonas acidovorans   总被引:3,自引:2,他引:1       下载免费PDF全文
1. Dehydratases that converted d-glucarate into 4-deoxy-5-oxoglucarate were partially purified from Klebsiella aerogenes and Pseudomonas acidovorans. 2. When d-glucarate was metabolized to 2,5-dioxovalerate it appeared that water and carbon dioxide were removed from 4-deoxy-5-oxoglucarate in one enzymic step: 4,5-dihydroxy-2-oxovalerate was not an intermediate in this reaction. 3. A method for the enzymic determination of d-glucarate is described.  相似文献   

6.
The metabolism of protocatechuate by Pseudomonas testosteroni   总被引:5,自引:5,他引:0  
1. Protocatechuate 4,5-oxygenase, purified 21-fold from extracts of Pseudomonas testosteroni, was examined in the ultracentrifuge and assigned a mol.wt. of about 140000. 2. When diluted, the enzyme rapidly lost activity during catalysis. Inactivation was partially prevented by l-cysteine. 3. With a saturating concentration of protocatechuate (1·36mm), Km for oxygen was 0·303mm. This value is greater than the concentration of oxygen in water saturated with air at 20°. 4. Cell extracts converted protocatechuate into γ-carboxy-γ-hydroxy-α-oxovalerate, which was isolated as its lactone. 5. γ-Carboxy-γ-hydroxy-α-oxovalerate pyruvate-lyase activity was stimulated by Mg2+ ions and mercaptoethanol. Cells grown with p-hydroxybenzoate as carbon source contained higher concentrations of this enzyme than those grown with succinate.  相似文献   

7.
The metabolism of cresols by species of Pseudomonas   总被引:53,自引:11,他引:53       下载免费PDF全文
1. A comparison of rates of oxidation of various compounds by whole cells indicated that protocatechuate was a reaction intermediate when a non-fluorescent species of Pseudomonas oxidized p-cresol. In contrast, a fluorescent Pseudomonas oxidized 3-methylcatechol and 4-methylcatechol when grown with p-cresol, but did not oxidize protocatechuate. 2. Heat-treated extracts of the fluorescent Pseudomonas oxidized catechol, 3-methylcatechol and 4-methylcatechol to ring-fission products, the spectroscopic properties of which were recorded. Rates of enzymic degradation of these products were also measured. 3. Acetic acid and formic acid were obtained by the action of a Sephadex-treated extract on 3-methylcatechol and 4-methylcatechol respectively. In each case 0.8mol. of the carboxylic acid was formed from 1.0mol. of substrate. 4. Dialysed extracts converted 3-methylcatechol into acetaldehyde and pyruvate, with 4-hydroxy-2-oxovalerate as a reaction intermediate. 4-Methylcatechol was converted first into 4-hydroxy-2-oxohexanoate and then into propionaldehyde and pyruvate. 5. The ring-fission product of catechol was formed from phenol by a fluorescent Pseudomonas, that of 3-methylcatechol was formed from o-cresol and m-cresol, and the ring-fission product of 4-methylcatechol was given from p-cresol. Propionate was readily oxidized by these cells after growth with p-cresol, but this compound was not attacked when phenol, o-cresol or m-cresol served as source of carbon. 6. Cell extracts appeared to attack only one enantiomer of synthetic 4-hydroxy-2-oxohexanoate.  相似文献   

8.
9.
10.
1. Washed suspensions of Pseudomonas fluorescens, grown with benzoate as sole carbon source, oxidize monohalogenobenzoates in the following descending order of effectiveness: benzoate, fluorobenzoates, chlorobenzoates, bromobenzoates, iodobenzoates. 2. Cells grown on asparagine oxidize benzoate after an adaptive period of 90–120min. This adaptive period is increased by halogenobenzoates in the following approximate descending order of effectiveness: chlorobenzoates, fluorobenzoates (=bromobenzoates), iodobenzoates. This inhibition of adaptation by halogeno analogues depends on the concentration of benzoate and is thus apparently competitive. 3. Cells do not adapt to oxidize the halobenzoates when the halogeno analogues are inducers. However, the fluorobenzoates reduce the lag period taken to form the benzoate-oxidizing system. 4. The halogenobenzoates inhibit adaptation to citrate and nicotinate but not so effectively as benzoate itself. This is presumably a `diauxic' effect. The analogues do not inhibit adaptation to catechol. 5. The halogenobenzoates are not used as sole carbon source for growth nor do they increase growth when cells grow with asparagine as the main carbon source. 6. It is suggested that this inability to use the analogues for growth is due partly to inability of the cells to liberate the halogen and to carry the oxidation to a stage at which carbon may be assimilated and partly to the inhibition of the induction of the oxidizing enzymes.  相似文献   

11.
12.
A typical facultative methylotroph Pseudomonas oleovorans oxidizes methanol to formaldehyde by a specific dehydrogenase which is active towards phenazine metosulphate. Direct oxidation of formalydehyde to CO2 via formiate is a minor pathway because the activities of dehydrogenases of formaldehyde and formiate are lwo. Most formaldehyde molecules are involved in the hexulose phosphate cycle, which is confirmed by a high activity of hexulose phosphate synthase. Formaldehyde is oxidized to CO2 in the dissimilation branch of the cycle providing energy for biosynthesis; this confirmed by higher levels of dehydrogenases of glucose-6-phosphate and 6-phosphogluconate during the methylotrophous growth of the cells. The acceptor of formaldehyde (ribulose-5-phosphate) is regenerated and pyruvate is synthesized in the assimilation branch of the hexulose phosphate cycle. Aldolase of 2-keto-3-deoxy-6-phosphogluconate plays an important role in this process. Further metabolism of trioses involves reactions of the tricarboxylic acid cycle which performs mainly an anabolic function due to complete repression of alpha-ketoglutarate dehydrogenase during the methylotrophous growth. The carbon of methanol is partially assimilated as CO2 by the carboxylation of pyruvate or phosphoenolpyruvate. NH+4 is assimilated by the reductive amination of alpha-ketoglutarate.  相似文献   

13.
1. Extracts of Pseudomonas sp. grown on butane-2,3-diol oxidized glyoxylate to carbon dioxide, some of the glyoxylate being reduced to glycollate in the process. The oxidation of malate and isocitrate, but not the oxidation of pyruvate, can be coupled to the reduction of glyoxylate to glycollate by the extracts. 2. Extracts of cells grown on butane-2,3-diol decarboxylated oxaloacetate to pyruvate, which was then converted aerobically or anaerobically into lactate, acetyl-coenzyme A and carbon dioxide. The extracts could also convert pyruvate into alanine. However, pyruvate is not an intermediate in the metabolism of glyoxylate since no lactate or alanine could be detected in the reaction products and no labelled pyruvate could be obtained when extracts were incubated with [1-14C]glyoxylate. 3. The 14C was incorporated from [1-14C]glyoxylate by cell-free extracts into carbon dioxide, glycollate, glycine, glutamate and, in trace amounts, into malate, isocitrate and α-oxoglutarate. The 14C was initially incorporated into isocitrate at the same rate as into glycine. 4. The rate of glyoxylate utilization was increased by the addition of succinate, α-oxoglutarate or citrate, and in each case α-oxoglutarate became labelled. 5. The results are consistent with the suggestion that the carbon dioxide arises by the oxidation of glyoxylate via reactions catalysed respectively by isocitratase, isocitrate dehydrogenase and α-oxoglutarate dehydrogenase.  相似文献   

14.
15.
16.
17.
The metabolism of 2-furoic acid by Pseudomonas F2   总被引:2,自引:0,他引:2  
1. Pseudomonas F2 isolated by enrichment culture on 2-furoic acid and grown with it as carbon source oxidized the compound with a Q(o) (2) of 170mul./mg. dry wt./hr. and the overall consumption of 2.5mumoles of oxygen/mumole of substrate. 2. In the presence of 1mm-sodium arsenite, oxygen uptake was restricted to 0.54mumole/mumole of 2-furoate oxidized, with the formation of 0.86mumole of 2-oxoglutarate/mumole of 2-furoate. 3. Cell suspensions, disrupted in a French pressure cell and centrifuged at 27000g, yielded supernatants capable of catalysing the slow oxidation of 2-furoate (0.17mumole/mg. of protein/hr.). 4. Fractionation of 27000g supernatants at 200000g yielded a soluble enzyme fraction capable of catalysing the oxidation of 2-furoate only in the presence of added 200000g pellet or of Methylene Blue. 5. The 2-furoate-stimulated uptake of oxygen or the anaerobic reduction of Methylene Blue by dialysed 27000g supernatant required the addition of ATP and CoA, and the rate of oxygen uptake was further enhanced by the addition of magnesium chloride and NAD(+). 6. The role of ATP and CoA in the formation of 2-furoyl-CoA was demonstrated by the accumulation of 2-furoylhydroxamic acid in the presence of hydroxylamine. 7. Dialysed 200000g supernatant, treated with Dowex 1, required the addition of ATP, CoA and Methylene Blue before it could oxidize 2-furoate to 2-oxoglutarate, which was trapped in unitary stoicheiometric yield as its phenylhydrazone. Magnesium chloride and NAD(+) were not stimulatory in this system. The oxidation of 2-furoate to 2-oxoglutarate was not inhibited by substrate analogues, metal ion-chelating agents, thiol-active compounds or inhibitors of cytochrome-mediated electron transport. 8. No evidence was obtained for the intervention of 2,5-dioxovalerate as an intermediate in 2-oxoglutarate formation.  相似文献   

18.
alpha-Pinene metabolism by Pseudomonas putida.   总被引:1,自引:0,他引:1       下载免费PDF全文
By using metabolically altered mutants and acrylate, novel putative intermediates of alpha-pinene metabolism by Pseudomonas putida PIN11 were detected. They were characterized as 3-isopropylbut-3-enoic acid and (zeta)-2-methyl-5-isopropylhexa-2,5-dienoic acid.  相似文献   

19.
Evidence is presented for the existence in Pseudomonas putida of two NAD-linked dehydrogenases that function sequentially to oxidize benzyl alcohol. Induction of muconate lactonizing enzyme, a 3-oxoadipate pathway enzyme, indicated that P. putida oxidized benzyl alcohol to benzoate. Polyacrylamide gel electrophoresis with activity staining and enzymatic assays for an NAD-dependent dehydrogenase both showed that cells contained a single, constitutive alcohol dehydrogenase capable of oxidizing benzyl alcohol. This enzyme was shown to have the same specificity in extracts of glucose-grown as in benzy alcoholgrown cells. An NAD-aldehyde dehydrogenase oxidized benzaldehyde but was most active with normal alkyl aldehydes. This aldehyde dehydrogenase was shown to be induced, by enzymatic assays and by activity staining of polyacrylamide gel electropherograms, not only in cells grown on benzyl alcohol, but also in cells grown on ethanol. These experiments suggested that the aldehyde dehydrogenase was induced by the alcohol being oxidized rather than the substrate aldehyde.In sum, the evidence from enzyme assays and polyacrylamide gel electrophoresis of extracts indicates that Pseudomonas putida catabolizes benzyl alcohol slowly when it is the sole carbon and energy source, by the action of a constitutive, nonspecific, alcohol dehydrogenase and an alcohol-induced, nonspecific aldehyde dehydrogenase to yield benzoate, which is further metabolized via the 3-oxoadipate (beta-ketoadipate) pathway.In memory of R. Y. Stanier  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号