首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Candida utilis grew on ehtanol and an ethanol-isopropanol-water (22:2:1 vols) mixture but not on isopropanol alone. Acetone accumulated in all cultures containing isopropranol but its presence in the alcohol mixture did not lower growth rate or yield significantly when compared with growth experiments on ethanol alone. Growth rate and yield declined at ethanol concentrations greater than 1% (v/v) and 0.3% (v/v) respectively. In a 0.3% (v/v) alcohol mixture, acetate was found only during the exponential growth phase. In a 3% (v/v) mixture, acetate and ethyl acetate accumulated during growth whereas acetaldehyde was present only during the exponential growth phase.  相似文献   

2.
Recombinant Candida utilis for the production of biotin   总被引:2,自引:0,他引:2  
Biotin is an important nutritional supplement but is difficult to manufacture effectively. Here we present a trial of biotin production using the food yeast Candida utilis. In this system, we cloned the C. utilis biotin synthase (BIO2) gene, the gene of the rate-limiting enzyme for biotin biosynthesis, and assembled it under the control of a strong promoter. A series of plasmids were constructed to direct the integration of the BIO2 gene, either high-copy integration with 18S rDNA fragment or low-copy integration with URA3 or HIS3 fragment. The BIO2 gene can be successfully integrated into the C. utilis chromosome and can drive biotin production using these plasmids. The biotin yield in this system can reach 100-fold above the endogenous level in a small-scale culture. Although the biotin production is not stable if the selection pressure is removed, this system has the potential to produce biotin-rich feed or food additives directly without the requirement of further purification.  相似文献   

3.
The protoplasts of Candida utilis 295 t were produced with the aid of the lytic enzyme from Helix pomatia. If the cell wall of C. utilis 295 t is not treated with SH-compounds (the best effect was found with L-cysteine), it is resistant to the action of the enzyme. The yield of the protoplasts was 100 per cent after 15 minutes of the incubation with the lytic enzyme if the cells were preliminarily treated with L-cysteine. Optimal conditions for the production of the protoplasts are described.  相似文献   

4.
Flavins in the form of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) play an important role in metabolism as cofactors for oxidoreductases and other enzymes. Flavin nucleotides have applications in the food industry and medicine; FAD supplements have been efficiently used for treatment of some inheritable diseases. FAD is produced biotechnologically; however, this compound is much more expensive than riboflavin. Flavinogenic yeast Candida famata synthesizes FAD from FMN and ATP in the reaction catalyzed by FAD synthetase, a product of the FAD1 gene. Expression of FAD1 from the strong constitutive promoter TEF1 resulted in 7- to 15-fold increase in FAD synthetase activity, FAD overproduction, and secretion to the culture medium. The effectiveness of FAD production under different growth conditions by one of these recombinant strains, C. famata T-FD-FM 27, was evaluated. First, the two-level Plackett–Burman design was performed to screen medium components that significantly influence FAD production. Second, central composite design was adopted to investigate the optimum value of the selected factors for achieving maximum FAD yield. FAD production varied most significantly in response to concentrations of adenine, KH2PO4, glycine, and (NH4)2SO4. Implementation of these optimization strategies resulted in 65-fold increase in FAD production when compared to the non-optimized control conditions. Recombinant strain that has been cultivated for 40 h under optimized conditions achieved a FAD accumulation of 451 mg/l. So, for the first time yeast strains overproducing FAD were obtained, and the growth media composition for maximum production of this nucleotide was designed.  相似文献   

5.
产朊假丝酵母是生物安全(Generally Recognized as Safe,GRAS)的微生物,也是一种重要的工业微生物。近20年来,随着分子生物学技术的发展,产朊假丝酵母的基因表达系统和基因工程研究及开发应用取得了显著的进展,使得利用该菌表达多种物质成为可能。本文概述了产朊假丝酵母的生物学特点、外源基因表达系统、基因敲除、遗传转化等方面的研究和应用进展。  相似文献   

6.
Pyruvate decarboxylase (PDC) catalyses the synthesis of asymmetric carbinols, e.g., chiral precursors for pharmaceuticals such as ephedrine and pseudoephedrine. The production of PDC by Candida utilis in a minimal medium was improved by manipulating the pH during fermentation in a 5 L bioreactor. At an aeration rate of 0.1 vvm with a stirrer speed of 300 rpm at constant pH 6, a specific PDC activity of 141 U/g dry cell weight (DCW) was achieved (average of two fermentations +/-13%). By allowing the yeast to acidify the growth medium from pH 6 to 2.9, the final specific PDC activity increased by a factor of 2.7 to 385 U/g DCW (average from 4 fermentations +/-16%). The effect of this pH drift on PDC production was confirmed by another experiment with a manual shift of pH from 6 to 3 by addition of 5 M sulfuric acid. The final PDC activity was 392 U/g DCW (average from two fermentations +/-5%). However, experiments with constant pH of 6, 5, 4, or 3 resulted in average specific activities of only 102 to 141 U/g DCW, suggesting that a transitional pH change rather than the absolute pH value was responsible for the increased specific PDC activity.  相似文献   

7.
Engineering microbial hosts for the production of higher alcohols looks to combine the benefits of renewable biological production with the useful chemical properties of larger alcohols. In this review we outline the array of metabolic engineering strategies employed for the efficient diversion of carbon flux from native biosynthetic pathways to the overproduction of a target alcohol. Strategies for pathway design from amino acid biosynthesis through 2-keto acids, from isoprenoid biosynthesis through pyrophosphate intermediates, from fatty acid biosynthesis and degradation by tailoring chain length specificity, and the use and expansion of natural solvent production pathways will be covered.  相似文献   

8.
  1. Download : Download high-res image (65KB)
  2. Download : Download full-size image
  相似文献   

9.
Technologies are available which will allow the conversion of lignocellulose into fuel ethanol using genetically engineered bacteria. Assembling these into a cost-effective process remains a challenge. Our work has focused primarily on the genetic engineering of enteric bacteria using a portable ethanol production pathway. Genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase have been integrated into the chromosome of Escherichia coli B to produce strain KO11 for the fermentation of hemicellulose-derived syrups. This organism can efficiently ferment all hexose and pentose sugars present in the polymers of hemicellulose. Klebsiella oxytoca M5A1 has been genetically engineered in a similar manner to produce strain P2 for ethanol production from cellulose. This organism has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes. The optimal pH for cellulose fermentation with this organism (pH 5.0-5.5) is near that of fungal cellulases. The general approach for the genetic engineering of new biocatalysts has been most successful with enteric bacteria thus far. However, this approach may also prove useful with Gram-positive bacteria which have other important traits for lignocellulose conversion. Many opportunities remain for further improvements in the biomass to ethanol processes. These include the development of enzyme-based systems which eliminate the need for dilute acid hydrolysis or other pretreatments, improvements in existing pretreatments for enzymatic hydrolysis, process improvements to increase the effective use of cellulase and hemicellulase enzymes, improvements in rates of ethanol production, decreased nutrient costs, increases in ethanol concentrations achieved in biomass beers, increased resistance of the biocatalysts to lignocellulosic-derived toxins, etc. To be useful, each of these improvements must result in a decrease in the cost for ethanol production. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

10.
Metabolic engineering of beta-lactam production   总被引:2,自引:0,他引:2  
Metabolic engineering has become a rational alternative to classical strain improvement in optimisation of beta-lactam production. In metabolic engineering directed genetic modification are introduced to improve the cellular properties of the production strains. This has resulted in substantial increases in the existing beta-lactam production processes. Furthermore, pathway extension, by heterologous expression of novel genes in well-characterised strains, has led to introduction of new fermentation processes that replace environmentally damaging chemical methods. This minireview discusses the recent developments in metabolic engineering and the applications of this approach for improving beta-lactam production.  相似文献   

11.
Ethanol has been reported to be a gaseous pollutant, originating from the agricultural industry. Interest in its biodegradation has increased over the last two decades. Most of the current studies have focused on its elimination by mixed cultures. This study is part of a broader project intended to utilize Candida utilis strains for gaseous ethanol elimination and to eventually bioconvert them into biomass and/or volatile metabolites. We present here the study of six strains (one from the ATCC and five from the ICIDCA collection) cultivated in a liquid medium, with initial ethanol concentrations of 16 g/l and 32 g/l. At 16 g/l, a maximum ethanol elimination rate of 0.13 g/l × h was obtained in four of the six strains (ATCC 9950, L/375–1, L/375–5 and L/375–10). This rate increased to 0.21 g/l × h with an initial ethanol concentration of 32 g/l. The L/375–5 strain was the best biomass producer (3.3 g/l) at 32 g/l, while the highest ethyl acetate production (0.80 g/l) was obtained with the L/375–1 strain. The L/375–25 and L/375–26 strains which showed very low ethyl acetate production were, by way of contrast, efficient acetaldehyde producers, with 0.54 g/l and 0.66 g/l measured in the broth. While biomass production reached its maximum after two days of culture, the production of acetic acid and ethyl acetate continued during the third day. The results for biomass and metabolite production obtained with the ICIDCA collection strains (L/375–1, L/375–5 and L/375–10) were better than those obtained with the ATCC 9950 strain, although the latter often has been reported to be particularly suitable for metabolite production.  相似文献   

12.
13.
14.
代谢工程方法改造大肠杆菌生产胸苷   总被引:1,自引:0,他引:1  
胸苷是抗艾滋病药物司他夫定(3′-脱氧-2′,3′-双脱氢胸苷)和叠氮胸苷的重要前体物质。应用代谢工程方法对大肠杆菌Escherichia coli BL21(DE3)生物合成胸苷进行了研究。通过敲除E.coli BL21嘧啶回补途径的deo A、tdk和udp三个基因,BS03工程菌株能够积累21.6 mg/L胸苷。为了增加合成胸苷前体物核糖-5-磷酸和NADPH的供给,进一步敲除pgi和pyr L使工程菌BS05胸苷的产量提高到90.5 mg/L。而通过过表达胸苷合成途径的ush A、thy A、dut、ndk、nrd A和nrd B六个基因,菌株BS08胸苷的产量能达到272 mg/L。通过分批补料发酵,BS08最终可以积累1 248.8 mg/L的胸苷。本研究结果表明经过代谢工程改造的E.coli BL21具有良好的胸苷合成能力和应用潜力。  相似文献   

15.
Propionibacteria are widely used in industry for manufacturing of Swiss cheese, vitamin B12, and propionic acid. However, little is known about their genetics and only a few reports are available on the metabolic engineering of propionibacteria aiming at enhancing fermentative production of vitamin B12 and propionic acid. n-Propanol is a common solvent, an intermediate in many industrial applications, and a promising biofuel. To date, no wild-type microorganism is known to produce n-propanol in sufficient quantities for industrial application purposes. In this study, a bifunctional aldehyde/alcohol dehydrogenase (adhE) was cloned from Escherichia coli and expressed in Propionibacterium freudenreichii. The mutants expressing the adhE gene converted propionyl- coenzyme A, which is the precursor for propionic acid biosynthesis, to n-propanol. The production of n-propanol was limited by NADH availability, which was improved significantly by using glycerol as the carbon source. Interestingly, the improved propanol production was accompanied by a significant increase in propionic acid productivity, indicating a positive effect of n-propanol biosynthesis on propionic acid fermentative production. To our best knowledge, this is the first report on producing n-propanol by metabolically engineered propionibacteria, which offers a novel route to produce n-propanol from renewable feedstock, and possibly a new way to boost propionic acid fermentation.  相似文献   

16.
【目的】肌醇别名环己六醇,是一种具有生物活性的糖醇,在医药、食品和饲料等领域具有重要的应用价值。为获得生产肌醇的微生物细胞工厂,通过代谢工程改造,构建生产肌醇的酿酒酵母工程菌株。【方法】对酿酒酵母肌醇合成途径的正负调控同时改造,过表达肌醇-3-磷酸合成酶基因ino1,敲除肌醇生物合成的转录抑制子基因opi1和抗性基因kan MX,获得重组菌。利用气相色谱法检测重组菌发酵液中肌醇含量。【结果】构建了生物安全性的产肌醇基因工程菌株,摇瓶培养产量为1.021 g/L。【结论】通过过表达ino1和敲除opi1来改造酿酒酵母,能够有效提高重组菌的肌醇产量,为下一步的微生物发酵法产肌醇的工业应用奠定基础。  相似文献   

17.
Agmatine is a kind of important biogenic amine. The chemical synthesis route is not a desirable choice for industrial production of agmatine. To date, there are no reports on the fermentative production of agmatine by microorganism. In this study, the base Escherichia coli strain AUX4 (JM109 ?speC ?speF ?speB ?argR) capable of excreting agmatine into the culture medium was first constructed by sequential deletions of the speC and speF genes encoding the ornithine decarboxylase isoenzymes, the speB gene encoding agmatine ureohydrolase and the regulation gene argR responsible for the negative control of the arg regulon. The speA gene encoding arginine decarboxylase harboured by the pKK223‐3 plasmid was overexpressed in AUX4, resulting in the engineered strain AUX5. The batch and fed‐batch fermentations of the AUX5 strain were conducted in a 3‐L bioreactor, and the results showed that the AUX5 strain was able to produce 1.13 g agmatine L?1 with the yield of 0.11 g agmatine g?1 glucose in the batch fermentation and the fed‐batch fermentation of AUX5 allowed the production of 15.32 g agmatine L?1 with the productivity of 0.48 g agmatine L?1 h?1, demonstrating the potential of E. coli as an industrial producer of agmatine.  相似文献   

18.
The thermophilic anaerobe Thermoanaerobacterium saccharolyticum JW/SL-YS485 was investigated as a host for n-butanol production. A systematic approach was taken to demonstrate functionality of heterologous components of the clostridial n-butanol pathway via gene expression and enzymatic activity assays in this organism. Subsequently, integration of the entire pathway in the wild-type strain resulted in n-butanol production of 0.85 g/L from 10 g/L xylose, corresponding to 21% of the theoretical maximum yield. We were unable to integrate the n-butanol pathway in strains lacking the ability to produce acetate, despite the theoretical overall redox neutrality of n-butanol formation. However, integration of the n-butanol pathway in lactate deficient strains resulted in n-butanol production of 1.05 g/L from 10 g/L xylose, corresponding to 26% of the theoretical maximum.  相似文献   

19.
Alkaloids purified from plants provide many pharmacologically active compounds, including leading chemotherapy drugs. As is generally true of secondary metabolites, overall productivity is low, making commercial production expensive. Alternative production methods remain impractical, leaving the plant as the best source for these valuable chemicals. Recently, significant progress in characterizing the biosynthetic pathways leading to various alkaloids has been made, and a number of relevant genes have been cloned. Metabolic engineering employing such genes provides a promising technology for improved productivity in plant cell cultures, plant tissue cultures, or intact plants. In exploring solutions though, metabolic engineers must be careful to recognize the limitations inherent in designing plant systems.  相似文献   

20.
Although L-serine proceeds in just three steps from the glycolytic intermediate 3-phosphoglycerate, and as much as 8% of the carbon assimilated from glucose is directed via L-serine formation, previous attempts to obtain a strain producing L-serine from glucose have not been successful. We functionally identified the genes serC and serB from Corynebacterium glutamicum, coding for phosphoserine aminotransferase and phosphoserine phosphatase, respectively. The overexpression of these genes, together with the third biosynthetic serA gene, serA(delta197), encoding an L-serine-insensitive 3-phosphoglycerate dehydrogenase, yielded only traces of L-serine, as did the overexpression of these genes in a strain with the L-serine dehydratase gene sdaA deleted. However, reduced expression of the serine hydroxymethyltransferase gene glyA, in combination with the overexpression of serA(delta197), serC, and serB, resulted in a transient accumulation of up to 16 mM L-serine in the culture medium. When sdaA was also deleted, the resulting strain, C. glutamicum delta sdaA::pK18mobglyA'(pEC-T18mob2serA(delta197)CB), accumulated up to 86 mM L-serine with a maximal specific productivity of 1.2 mmol h(-1) g (dry weight)(-1). This illustrates a high rate of L-serine formation and also utilization in the C. glutamicum wild type. Therefore, metabolic engineering of L-serine production from glucose can be achieved only by addressing the apparent key position of this amino acid in the central metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号