首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exploration of novel active anti-tumor compounds from marine microbes for pharmaceutical applications has been a continuously hot spot in natural product research. Bacterial growth and metabolites may greatly vary under different culture conditions. In this study, the effects of different culture conditions and medium components on the growth and bioactive metabolites of Serratia proteamacula 657, an anti-tumor bacterium found in our previous study, were investigated. The results showed that lower temperature, weak acidic condition and solid fermentation favored the bacterial growth and the production of active compounds. Four components in the culture medium, NaCl, peptone, yeast extract and MgSO4, were found important to the bacterial growth and active compounds production in medium optimization. Under the optimized condition of solid state fermentation at pH 6.0–7.0, 23–25 °C, with the MgSO4-free medium containing 10.0 g/L peptone, 1.0 g/L yeast extract and 19.45 g/L NaCl, the antitumor activity of S. proteamacula 657 and the yield of crude extracts increased about 15 times and 6 times than the sample obtained in the original liquid fermentation, respectively. The active components in the metabolites of S. proteamacula 657 were identified as a homolog of prodigiosin, a red bacterial pigment, based on the analysis of the NMR and GC–MS. The bacterium S. proteamacula 657, which is adapted to lower temperature, produced prodigiosin-like pigments with highly antitumor activity, suggesting the bacterium is a potential new source for prodigiosin production.  相似文献   

2.
The industrially-important thermostable lipase, TliA, was extracellularly produced in the recombinant Pseudomonas fluorescens by the homologous expression of TliA and its cognate ABC protein exporter, TliDEF. To increase the secretory production of TliA, we optimized the growth temperature and the culture medium of P. fluorescens. The total amount and the specific productivity of lipase was highest at 25 °C of cell growth temperature, although maximal cell growth was observed at 30 °C. Using the culture medium composed of 20 g dextrin l?1, 40 g Tween 80 l?1 and 30 g peptone l?1, TliA was produced at a level of 2,200 U ml?1 in a flask culture. The TliA production increased about 3.8-fold (8,450 U ml?1) in batch fermentation using a 2.5 l fermentor, which was about 7.7-fold higher than that of previously reported TliA production.  相似文献   

3.
A single peak (λmax 370) yellow pigment-producing mutant derived from Monascus sp. TISTR 3179 was used for the pigment production in solid rice culture. Various factors affecting yellow tones were investigated. Hom-mali rice variety was the best amongst five Thai local varieties used for fungus culture. It was also better than corn, mungbean, soybean, potato, sweet potato, or cassava tubers. The moisture content and temperature were the key environmental factors affecting the color tones of creamy, tangerine, and golden brown rice solid cultures. The golden brown rice culture gave the highest yellow pigment concentration. Under an optimum room temperature of 28–32 °C, an initial moisture content of 42 %, and 7-day-old inoculum size of 2 % (v/w) the maximum yield at 2,224.63 A370U/gdw of yellow pigment was produced. A mellow yellow powder at 550 A370U/gdw could be obtained using spray-drying techniques. The powder had a moisture content of 5.15 %, a water activity value of 0.398, a hue angle of 73.70 ° (yellowish orange), high lightness (L*) of 74.63, color saturation (C*) of 28.97, a neutral pH of 7.42, 0.12 % acidity and solubility of 0.211 g/10 ml. It was noteworthy that the Chinese fresh noodle with spray-dried yellow powder showed no discoloration during 8-day storage.  相似文献   

4.
The fermentation medium and conditions for the production of cordycepin were optimized in static culture using single-factor experiments, Placket–Burman design, a central composite design, and response surface methodology. Among seven variables including temperature, pH, and the concentrations of glucose, tryptone, yeast extract, KH2PO4, and MgSO4 · 7H2O, temperature and the concentrations of yeast extract and tryptone were found to be the important factors that significantly affected cordycepin production. The optimized medium consisted of yeast extract 9.00 g/L and tryptone 17.10 g/L, while the optimized culture conditions consisted of seed age 3 days, with an inoculum size of 10% and incubation temperature of 27.1°C. A maximum cordycepin yield of 7.35 g/L was achieved in a 5-L fermenter under the optimized conditions. Next, cordycepin was partially purified and determined. The resulting product showed 90.54% high-performance liquid chromatography (HPLC)–ultraviolet (UV) purity. Therefore, cordycepin was applied to a cell viability assay on SH-SY5Y cells and RM-1 cells. Cordycepin can inhibit the proliferation of RM-1 cells with IC50 of 133 µmol/L, but it has no inhibitory effect on SH-SY5Y cells.

Supplemental materials are available for this article. Go to the publisher's online edition of Preparative Biochemistry and Biotechnology to view the supplemental file.  相似文献   

5.
β-Exoglucanase production on the lignocellulosic material, wheat bran, by Aspergillus niger under solid state fermentation (SSF) on a laboratory scale was investigated. Different fermentation parameters, such as moisture content, initial pH, temperature, depth of the substrate, and inoculum size on exoglucanase production were optimized. Moisture content of 40 %, pH of 7.0, substrate depth of 1.0 cm, inoculum size of 2?×?106 spores/g of wheat bran, and temperature at 30 °C were optimal for maximum production of exoglucanase. Maximum yields of exoglucanase with 28.60 FPU/g of wheat bran were obtained within 3 days of incubation under optimal conditions.  相似文献   

6.
Large-scale purification of the highly hydrophobic bacteriocin thurincin H was accomplished via a novel and simple two-step method: ammonia sulfate precipitation and C18 solid-phase extraction. The inhibition spectrum and stability of thurincin H as well as its antagonistic activity against Bacillus cereus F4552 spores were further characterized. In the purification method, secreted proteins contained in the supernatant of a 40 h incubated culture of B. thuringiensis SF361 were precipitated by 68 % ammonia sulfate and purified by reverse-phase chromatography, with a yield of 18.53 mg/l of pure thurincin H. Silver-stained SDS–PAGE, high-performance liquid chromatography, and liquid chromatography–mass spectrometry confirmed the high purity of the prepared sample. Thurincin H exhibited a broad antimicrobial activity against 22 tested bacterial strains among six different genera including Bacillus, Carnobacterium, Geobacillus, Enterococcus, Listeria, and Staphylococcus. There was no detectable activity against any of the selected yeast or fungi. The bacteriocin activity was stable for 30 min at 50 °C and decreased to undetectable levels within 10 min at temperatures above 80 °C. Thurincin H is also stable from pH 2–7 for at least 24 h at room temperature. Thurincin H is germicidal against B. cereus spores in brain heart infusion broth, but not in Tris–NaCl buffer. The efficient purification method enables the large-scale production of pure thurincin H. The broad inhibitory spectrum of this bacteriocin may be of interest as a potential natural biopreservative in the food industry, particularly in post-processed and ready-to-eat food.  相似文献   

7.
A sugarcane juice-based low cost culture medium was previously explored to produce the carotenoid pigment astaxanthin in liquid culture by the red yeast Phaffia rhodozyma (1300?μg astaxanthin/g of dry yeast and 6500?μg/l whole culture medium). Two peculiar limitations in Phaffia are growth temperature (<26?°C) and lack of sugar osmotolerance. Two advantages are the wide biochemical ability for the assimilation and metabolization of disaccharides and the prompt utilization of simple nitrogen sources. For instance, the sucrolytic/ureolytic enzymatic activities deserves exploration. In order to improve the culture medium composition and the conditions of fermentation for highly oxygenated carotenoids (e.g., astaxanthin) a study was carried out with a factorial design in two steps. As a first step, the production of astaxanthin was studied as a function of the nutrient concentration levels and their interactions. The production increase (μg/l) obtained was 23.0% but at the expense of 16.0% pigment content decrease (μg/g). In the second step, the variables pH and agitation level (OTR, oxygen transfer rate) were optimized and then, both goals were attained: the increase of pigment content (418?μg astaxanthin/g of yeast) as well as the absolute pigment production enhancement (1987?μg/l).  相似文献   

8.
In this study, shrimp shell powder, prepared by treating shrimp-processing waste by boiling and crushing, was used as a substrate for isolation of chitinase-producing microorganism. These organisms may have an important economic role in the biological control of rice and other fungal pathogens. Two hundred strains of bacteria with the ability to degrade chitin from shrimp shell waste were isolated from paddy soil, and of these, 40 strains showed chitinase activity in a solid state cultivation. One of the most potent isolates (strain R 176) was identified as Bacillus thuringiensis. Identification was carried out using morphological and biochemical properties along with 16S rRNA sequence analysis. This strain was able to produce high levels of extracellular chitinase in solid media containing shrimp shells as sole carbon source [1.36 U/g initial dry substrate (IDS)], which was 0.36-fold higher than the productivity in a liquid culture with colloidal chitin. The effects of medium composition and physical parameters on chitinase production by this organism were studied. The optimal medium contained shrimp shell mixed with rice straw in 1:1 ratio added with ball-milled chitin 0.5 % (w/v) and ammonium sulfate 0.5 % (w/v). The highest enzyme production (3.86 U/g IDS) by B. thuringiensis R 176 was obtained at pH 7, 37 °C after 14 days growth. With respect to the high amount of chitinase production by this strain in a simple medium, this strain could be a suitable candidate for the production of chitinase from chitinous solid substrates, and further investigations into its structure and characteristics are merited.  相似文献   

9.
The culture conditions for extracellular production of phytase by two strains of Bacillus licheniformis (LF1 and LH1) isolated from the proximal and distal intestine of rohu (Labeo rohita) were optimized to obtain maximum level of phytase. Both the strains were cultured TSA broth for 24 h at 37 ± 2 °C, when average viable count of 9.75 × 10cells ml?1 culture broth was obtained. This was used as the inoculum for the production medium. Sesame (Sesamum indicum) oilseed meal was used as the source of phytic acid (substrate). The effects of moisture, pH, temperature, fermentation period, inoculum size, different nitrogen sources, vitamins and surfactants on phytase production by these two strains were evaluated. Phytase yield was highest (1.87 U in LF1 and 1.57 U in LH1) in solid-state fermentation. Enzyme production in both the isolates increased in an optimum pH range of 5.5–6.5. Minimum phytase production was observed at 50 °C, while maximum production was obtained at 40 °C. To standardize the fermentation period for phytase production, production rate was measured at 12-h intervals up to 120 h. Enzyme production increased for 72 h of fermentation in both strains, and decreased thereafter. The enzyme production increased with increased inoculum size up to 3.0 percentage points for the strain LF1 and up to 2.0 % for the strains LH1. Ammonium sulphate as the nitrogen source was most effective in LF1, while beef extract proved useful to maximize enzyme production by LH1.  相似文献   

10.
Reliable, large-scale production of Lagenidium giganteum zoospores was obtained on solid media. The fungus was grown for 7 days in a liquid medium of wheat germ, hemp seed, yeast extract, and glucose, then placed onto hemp-seed agar. Zoosporogenesis was induced on agar by immersing the fungal cultures into water. Zoospore production began 10 hr postimmersion, peaked at 18 hr, and ceased by 36 hr. A single, 10-cm Petri dish of fungus on hemp-seed agar produced 1.7?3.8 × 107 zoospores during the 26 hr of zoosporogenesis. Optimal zoospore production occurred with 4- to 7-day-old cultures; cultures older than 10 days produced few zoospores. The temperature range for zoosporogenesis was 15–35°C. The extent of zoosporogenesis was directly related to the volume of water used to induce zoospore formation and inversely proportional to agar thickness. Bioassay of zoospores against second instar Culex quinquefasciatus larvae yielded an LD50 of 400 zoospores/ml.  相似文献   

11.
Aspergillus oryzae produced a small amount of lipase (0.05–0.8 U/wet-g of solid medium) in solid cultures, in contrast to the larger amount (0.46 U/ml) in a shake-flask culture in a modified GYP medium containing 2% glucose, 1% yeast extract and 2% Polypepton. Optimum conditions of lipase production in the submerged culture of A. oryzae were determined in terms of pH, composition of medium, and temperature. In a shake-flask culture at 28°C, the maximum amount of lipase increased to 0.78 U/ml upon the addition of 3% soybean oil to the modified GYP medium. In a jar fermentor culture, 30 U/ml lipase activity was obtained after 72 h at 28°C under appropriate conditions. Lipase production was greatly influenced by the culture temperature, and the optimum temperature for lipase production was about 24°C with a narrow temperature range, which was 10 degrees lower than that for the growth. In the submerged cultures, two kinds of lipase at least exhibiting different substrate specificities were also suggested.  相似文献   

12.
A high titre of thermo-alkali-stable xylanase was attained in cane molasses medium. When the culture variables for endoxylanase production were optimized [cane molasses 7 %, soluble alkaline extract of wheat bran (SAE-WB) 37 % and ammonium chloride 0.30 %], a 4.5-fold enhancement in xylanase production (69 U ml?1) was achieved as compared to that in the unoptimized medium (15 U ml?1). The enzyme titre attained in shake flasks could be sustained in a 7-l laboratory bioreactor. An activity band corresponding to 40 kDa was visualized on SDS-PAGE zymogram analysis. The enzyme has broad range of pH and temperature for activity with optima at 9.0 and 80 °C, and stable between pH 4.0 and 11.0 with 85 % retention of activity. It has T 1/2 of 40 and 15 min at 70 and 80 °C. The enzyme is halotolerant since it displays activity in the presence of salt up to 15 %, and remains 100 % active in the absence of salt. The supplementation of whole wheat dough with xylanase improves antistaling property, reducing sugar content, bread volume with prebiotic xylooligosaccharides in bread. This is the first report on xylanase production in cane molasses medium with SAE-WB as the inducer and its applicability in whole wheat bread making that improves human health.  相似文献   

13.
Maintenance of articular cartilage allografts in culture media is a common method of tissue storage; however, the technical parameters of graft storage remain controversial. In this study, we examined the optimal temperature and culture medium exchange rate for the storage of osteochondral allografts in vitro. Cylindrical osteochondral grafts (n = 120), harvested from the talar joint surface of ten Boer goats, were randomly classified into four groups and stored under the following conditions: Group A1 was maintained at 4 °C in culture medium that was refreshed every 2 days; Group A2 was maintained at 4 °C in the same culture medium, without refreshing; Group B1, was maintained at 37 °C in culture medium that was refreshed every 2 days; Group B2, was maintained at 37 °C in the same culture medium, without refreshing. Chondrocyte viability in the grafts was determined by ethidium bromide/fluorescein diacetate staining on days 7, 21, and 35. Proteoglycan content was measured by Safranin-O staining. Group A1 exhibited the highest chondrocyte survival rates of 90.88 %, 88.31 % and 78.69 % on days 7, 21, and 35, respectively. Safranin O staining revealed no significant differences between groups on days 21 and 35. These results suggest that storage of osteochondral grafts at 4 °C with regular culture medium replacement should be highly suitable for clinical application.  相似文献   

14.
Sclerodermatoid fungi basidiomes were collected from northern Thailand and pure cultures were isolated. The morphology and molecular characteristics identified them as Astraeus odoratus, Phlebopus portentosus, Pisolithus albus and Scleroderma sinnamariense. This study investigated the in vitro ability of selected fungi to produce indole-3-acetic acid (IAA), to solubilize different toxic metal (Co, Cd, Cu, Pb, Zn)-containing minerals, and metal tolerance. The results indicated that all fungi are able to produce IAA in liquid medium. The optimum temperature for IAA production of all fungi was 30 °C, and the optimum concentration of L-tryptophan of Astraeus odoratus, Pisolithus albus and Scleroderma sinnamariense was 2 mg ml?1. The highest IAA yield (65.29?±?1.17 μg ml?1) was obtained from Phlebopus portentosus after 40 days of cultivation in culture medium supplemented with 4 mg ml?1 of L-tryptophan. The biological activity tests of fungal IAA showed that it can simulate coleoptile elongation, and increase seed germination and root length of tested plants. In addition, the metal tolerance and solubilizing activities varied for different minerals and fungal species. The presence of metal minerals affected fungal growth, and cobalt carbonate showed the highest toxicity. The solubilization index decreased when the concentration of metal minerals increased. Astraeus odoratus showed the lowest tolerance to metals. This is the first report of in vitro IAA production, solubilization of insoluble metal minerals and metal tolerance abilities of the tested fungi.  相似文献   

15.
The oomycete Leptolegnia chapmanii is among the most promising entomopathogens for biological control of Aedes aegypti. This mosquito vector breeds in small water collections, where this aquatic watermold pathogen can face short-term scenarios of challenging high or low temperatures during changing ambient conditions, but it is yet not well understood how extreme temperatures might affect the virulence and recycling capacities of this pathogen. We tested the effect of short-term exposure of encysted L. chapmanii zoospores (cysts) on A. aegypti larvae killed after infection by this pathogen to stressful low or high temperatures on virulence and production of cysts and oogonia, respectively. Cysts were exposed to temperature regimes between ?12 °C and 40 °C for 4, 6 or 8 h, and then their infectivity was tested against third instar larvae (L3) at 25 °C; in addition, production of cysts and oogonia on L3 killed by infection exposed to the same temperature regimes as well as their larvicidal activity were monitored. Virulence of cysts to larvae and the degree of zoosporogenesis on dead larvae under laboratory conditions were highest at 25 °C but were hampered or even blocked after 4 up to 8 h exposure of cysts or dead larvae at both the highest (35 °C and 40 °C) and the lowest (?12 °C) temperatures followed by subsequent incubation at 25 °C. The virulence of cysts was less affected by accelerated than by slow thawing from the frozen state. The production of oogonia on dead larvae was stimulated by short-term exposure to freezing temperatures (?12 °C and 0 °C) or cool temperatures (5 °C and 10 °C) but was not detected at higher temperatures (25 °C–40 °C). These findings emphasize the susceptibility of L. chapmanii to short-term temperature stresses and underscore its interest as an agent for biocontrol of mosquitoes in the tropics and subtropics, especially A. aegypti, that breed preferentially in small volumes of water that are generally protected from direct sunlight.  相似文献   

16.
A nitrile-hydrolysing bacterium, identified as Isoptericola variabilis RGT01, was isolated from industrial effluent through enrichment culture technique using acrylonitrile as the carbon source. Whole cells of this microorganism exhibited a broad range of nitrile-hydrolysing activity as they hydrolysed five aliphatic nitriles (acetonitrile, acrylonitrile, propionitrile, butyronitrile and valeronitrile), two aromatic nitriles (benzonitrile and m-Tolunitrile) and two arylacetonitriles (4-Methoxyphenyl acetonitrile and phenoxyacetonitrile). The nitrile-hydrolysing activity was inducible in nature and acetonitrile proved to be the most efficient inducer. Minimal salt medium supplemented with 50 mM acetonitrile, an incubation temperature of 30 °C with 2 % v/v inoculum, at 200 rpm and incubation of 48 h were found to be the optimal conditions for maximum production (2.64 ± 0.12 U/mg) of nitrile-hydrolysing activity. This activity was stable at 30 °C as it retained around 86 % activity after 4 h at this temperature, but was thermolabile with a half-life of 120 min and 45 min at 40 °C and 50 °C respectively.  相似文献   

17.
An efficient and cost effective micropropagation protocol using liquid medium was developed for Catharanthus roseus, a commercially important medicinal plant. Comparative analysis of shoot growth and proliferation in liquid Murashige and Skoog (MS) medium supplemented with different concentrations of cytokinins [6-Benzyladenine (BA), Kinetin (KN) and Thidiazuron (TDZ)] was conducted. Better response in terms of shoot proliferation, shoot diameter, number of leaves/shoot, number of branches/shoot, fresh weight and dry weight was observed in a liquid medium vis-à-vis solid medium. A sample of 20 ml of liquid medium supplemented with 5 ??M of BA was optimized for propagation of C. roseus by a liquid culture system. Among various concentrations of auxins tried, 1-Naphthaleneacetic acid (NAA) 5 ??M was found to be the best for root induction. Quantification of pharmaceutically important constituents (vincristine and vinblastine) and total alkaloid content of microshoots grown in solid and liquid medium as well as in vitro raised plants and mother plant was also conducted, hitherto unreported in this high-value medicinal plant. This work further lays the foundations for the shifting of plant production from small to commercial scale.  相似文献   

18.
Chitinase is one of the important mycolytic enzymes with industrial significance, and is produced by a number of organisms, including bacteria. In this study, we describe isolation, characterization and media optimization for chitinase production from a newly isolated thermotolerant bacterial strain, BISR-047, isolated from desert soil and later identified as Paenibacillus sp. The production of extracellularly secreted chitinase by this strain was optimized by varying pH, temperature, incubation period, substrate concentrations, carbon and nitrogen source,etc. The maximum chitinase production was achieved at 45 °C with media containing (in g/l) chitin 2.0, yeast extract 1.5, glycerol 1.0, and ammonium sulphate 0.2 % (media pH 7.0). A three-fold increase in the chitinase production (712 IU/ml) was found at the optimized media conditions at 6 days of incubation. The enzyme showed activity at broad pH (3–10) and temperature (35–100 °C) ranges, with optimal activity displayed at pH 5.0 and 55 °C, respectively. The produced enzyme was found to be highly thermostable at higher temperatures, with a half-life of 4 h at 100 °C.  相似文献   

19.
Microalgal biomass seems to be one of the potential alternative feedstocks for the production of various types of biofuel. In the present study, first of all, suitable growth media and harvesting time were determined for the freshwater chlorophyte microalga Acutodesmus dimorphus. Cultivation of A. dimorphus in BG-11 medium for 15 days resulted in the highest biomass productivity with 24.60 % lipid and 22.78 % carbohydrate contents. Further, thermotolerance property of A. dimorphus was evaluated by heat stressing the cells at 45 °C and 50 °C up to 24 h and determining the cell mortality and pigment composition along with lipid and carbohydrate contents. Chlorophyll and carotenoid contents of cells significantly increased after heat stress at 45 °C. Increasing the heat stress from 8 to 24 h increased the dead cells by 3–4 % at both temperatures, which shows the thermotolerance of A. dimorphus. Lipid content of 27 % and carbohydrate content of 26–28 % even after 24 h of heat stress at 45 and 50 °C suggest A. dimorphus as a potential feedstock for biofuel production.  相似文献   

20.
Agarase is a promising biocatalyst for several industrial applications. Agarase production was evaluated by the marine fungus Dendryphiella arenaria utilizing Palisada perforata as a basal substrate in semi-solid state fermentation. Seaweed biomass, glucose, and sucrose were the most significant parameters affecting agarase production, and their levels were further optimized using Box-Behnken design. The maximum agarase activity was 7.69 U/mL. Agarase showed a degree of thermostability with half-life of 99 min at 40 °C, and declining to 44.72 min at 80 °C. Thermodynamics suggested an important process of protein aggregation during thermal inactivation. Additionally, the enzymatic saccharification of the seaweed biomass using crude agarase was optimized with respect to biomass particle size, solid/liquid ratio, and enzyme loadings. The amount of biosugars obtained after optimization was 26.15 ± 1.43 mg/g. To the best of our knowledge, this is the first report on optimization of agarase in D. arenaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号