首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A partition study with peptides and recombinant proteins in poly(ethylene glycol)4000–potassium phosphate aqueous two-phase systems has been performed. The aim was to study to what extent the insertion of charged residues could affect protein partition in addition to the already observed effects of tryptophan residues. The model proteins used are based on a staphylococcal protein A derivative, Z, and modified by the insertion of peptide tags close to the C-terminus. The tags differed with respect to their content of both Trp, negatively (Asp) and positively charged (Lys) amino acid residues. The same partitioning trends were observed for the peptides and fusion proteins. The effect of Trp residues was to direct the partitioning towards the PEG phase. The insertion of two negatively charged (Asp) residues into a Trp4-tag enhanced the partition towards the PEG phase even more. The introduction of positively charged (Lys) residues in addition to Trp residues, on the other hand, pulled the peptide or protein towards the potassium phosphate phase. The partitioning of peptides gave a good qualitative picture of the effect of the peptide on partitioning when fused to the protein. The efficiencies of the tags were calculated based on partitioning of tags and fusion proteins, and tag efficiencies generally varied between 60 and 85%.  相似文献   

3.
Antimicrobial peptide P34 is a promising biopreservative for utilization in the food industry. In this work, aqueous biphasic systems (ABS) and aqueous biphasic micellar systems (ABMS) were studied as prestep for purification of peptide P34. The ABS was prepared with polyethylene glycol (PEG) and inorganic salts and the ABMS with Triton X-114 was chosen as the phase-forming surfactant. Results indicate that peptide P34 partitions preferentially to PEG-rich phase and extraction with ammonium sulfate [(NH4)2SO4], yielding a 75% recovery of the antimicrobial activity, specific activity of 1,530 antimicrobial units per mg of protein, and purification fold of 2.48. Protein partition coefficient and partition coefficient for the biological activity with (NH4)2SO4 system were 0.48 and 64, respectively. Addition of sodium chloride did not affect recovery, but decreased protein amount in the PEG-rich phase, indicating a higher partition of biomolecules. ABMS did not yield good recovery of antimicrobial activity. Purification fold using PEG–(NH4)2SO4 and 1.0?mol l?1 sodium chloride was twice higher than that obtained by conventional protocol, indicating a successful utilization of ABS as a step for purification of peptide P34.  相似文献   

4.
Partitioning of 15 proteins in polyethylene glycol (PEG)–sodium sulfate aqueous two-phase systems (ATPS) formed by PEG of two different molecular weights, PEG-600 and PEG-8000 in the presence of different buffers at pH 7.4 was studied. The effect of two salt additives (NaCl and NaSCN) on the protein partition behavior was examined. The salt effects on protein partitioning were analyzed by using the Collander solvent regression relationship between the proteins partition coefficients in ATPS with and without salt additives. The results obtained show that the concentration of buffer as well as the presence and concentration of salt additives affects the protein partition behavior. Analysis of ATPS in terms of the differences between the relative hydrophobicity and electrostatic properties of the phases does not explain the protein partition behavior. The differences between protein partitioning in PEG-600–salt and PEG-8000–salt ATPS cannot be explained by the protein size or polymer excluded volume effect. It is suggested that the protein–ion and protein–solvent interactions in the phases of ATPS are primarily important for protein partitioning.  相似文献   

5.
The partitioning pattern of bovine trypsinogen (TRPz) and alpha-chymotrypsinogen (ChTRPz) was investigated in a low impact aqueous two-phase system formed by polyethyleneglycol (PEG) and sodium tartrate (NaTart) pH 5.00. ChTRPz exhibited higher partition coefficients than TRPz did in all the assayed systems. The decrease in PEG molecular weight and the increase in tie line length were observed to displace the partitioning equilibrium of both proteins to the top phase, while phase volume ratios in the range 0.5–1.5 showed not to affect protein partitioning behaviour. Systems formed by PEG of molecular weight 600 with composition corresponding to a high tie line length (PEG 12.93%, w/w and NaTart 21.20%, w/w) are able to recover most of both zymogens in the polymer-enriched phase. A crucial role of PEG–protein interaction in the partitioning mechanism was evidenced by isothermal calorimetric titrations. The major content of highly exposed tryptophan rests, present in ChTRPz molecule, could be considered to be determinant of its higher partition coefficient due to a selective charge transfer interaction with PEG molecule. A satisfactory correlation between partition coefficient and protein surface hydrophobicity was observed in systems formed with PEGs of molecular weight above 4000, this finding being relevant in the design of an extraction process employing aqueous two-phase systems.  相似文献   

6.
7.
-Amylase production was studied in Bacillus amyloliquefaciens in aqueous two-phase systems composed of polyethyleneglycol (PEG)/dextran T500. Cells and enzyme were obtained in different phases when phase systems were applied to the growth media. Effects of different molecular weights and concentrations of polymers on differences of enzyme separation were established. The effect of PEG used in the system to the release of enzyme was investigated.  相似文献   

8.
The production of α-amylase (1,4-α-d-glucan glucanohydrolase, EC 3.2.1.1) by Bacillus subtilis has been studied in repeated batch fermentations in aqueous two-phase systems. In a phase system composed of PEG 600, 8% (w/w), PEG 3350, 5% (w/w)/Dextran T 500, 2% (w/w), 82% of the enzyme partitioned to the top phase. The enzyme concentration in the top phase reached 0.85–1.35 U ml?1 during the fermentations compared with 0.58 U ml?1 in the reference fermentation. In the phase system composed of PEG 3350, 9% (w/w)/Dextran T 500, 2% (w/w), 73% of the enzyme partitioned to the top phase. However, the enzyme concentration in this phase system reached only 0.35 U ml?1 in the top phase. The bacterial cells were microscopically observed to partition totally to the bottom phase in the aqueous two-phase system used. The results are discussed in relation to recirculation of cells by immobilizing to a solid matrix. Extraction of the product to the top phase and the effect of the phase polymers, especially PEG, on the production are also discussed.  相似文献   

9.
Summary The production of -glucosidase withAspergillus phoenicis QM 329 was studied in two different aqueous two-phase systems: polyethylene glycol (PEG) 1550 7.5%/Dextran T2000 9.5% and PEG 8000 4%/polyvinyl alcohol (PVA) 14000 8%. The enzyme concentrations in the top phase of the phase systems were 3.4 IU/ml and 3.2 IU/ml, respectively, compared with 2.0 IU/ml obtained in a regular medium. The total amount of -glucosidase obtained in the phase systems was 265 IU and 176 IU, respectively, compared with 200 IU in a regular medium.  相似文献   

10.
11.
Product inhibition is a barrier for enzymatic conversion of cellulose into reducing sugar in single aqueous phase. In addition, the difficulty in the recovery of cellulase also leads to high cost for the enzymatic hydrolysis of cellulose. In this study, enzymatic degradation of cellulose was carried out in pH–pH recyclable aqueous two-phase systems (ATPS) composed by copolymers poly (AA-co-DMAEMA-co-BMA) (abbreviated PADB3.8) and poly (MAA-co-DMAEMA-co-BMA) (abbreviated PMDB). In the systems, cellulase was immobilized on pH-response copolymer PMDB by using 1-Ethyl-3-(3-dimethyllaminopropyl)-carbodiimide hydrochloride (EDC) as cross-linker. Optimized partition coefficient of product in the systems was 2.45, in the presence of 40 mM (NH4)2SO4. Insoluble substrate and immobilized enzyme were biased to bottom phase, while the product was partitioned to top phase. Microcrystalline cellulose was hydrolyzed into reducing sugar, and the product entered into top phase. The yield of saccharification in ATPS could reach 70.57% at the initial substrate concentration of 0.5% (w/v), and the value was 9.3% higher than that in the single aqueous phase. Saccharification yield could reach 66.15% after immobilized cellulase was recycled five times in ATPS.  相似文献   

12.
Summary The effects of average molecular weight of PEG, concentrations of PEG and KH2PO4 and pH on the partition equilibrium of acetylspiramycin in PEG/KH2PO4 aqueous two-phase systems were studied in detail. The partition coefficients of acetylspiramycin in PEG/ KH2PO4 systems were measured at room temperature 25 °C. It was found that acetylspiramycin partitioned unevenly in the aqueous two-phase systems composed of PEG and KH2PO4 and could be purified by this technique. A suitable phase-forming system (pH=6.7, 12w/w% PEG2000, 11w/w% KH2PO4) was found out after partition coefficient (Kp=42) , extraction ratio (=96%) and recovery ratio(R=98.8%) were investigated comprehensively in this paper.Hua qiang is one of the cooperators of the experimetal.  相似文献   

13.
A solid–liquid two-phase partitioning bioreactor (TPPB) in which the non-aqueous phase consisted of polymer (HYTREL) beads was used to degrade a model mixture of phenols [phenol, o-cresol, and 4-chlorophenol (4CP)] by a microbial consortium. In one set of experiments, high concentrations (850 mg l−1 of each of the three substrates) were reduced to sub-inhibitory levels within 45 min by the addition of the polymer beads, followed by inoculation and rapid (8 h) consumption of the total phenolics loading. In a second set of experiments, the beneficial effect of using polymer beads to launch a fermentation inhibited by high substrate concentrations was demonstrated by adding 1,300 and 2,000 mg l−1 total substrates (equal concentrations of each phenolic) to a pre-inoculated bioreactor. At these levels, no cell growth and no degradation were observed; however, after adding polymer beads to the systems, the ensuing reduced substrate concentrations permitted complete destruction of the target molecules, demonstrating the essential role played by the polymer sequestering phase when applied to systems facing inhibitory substrate concentrations. In addition to establishing alternative modes of TPPB operation, the present work has demonstrated the differential partitioning of phenols in a mixture between the aqueous and polymeric phases. The polymeric phase was also observed to absorb a degradation intermediate (arising from the incomplete biodegradation of 4CP), which opens the possibility of using solid–liquid TPPBs during biosynthetic transformation to sequester metabolic byproducts.  相似文献   

14.
Summary We have determined phase diagrams at 22°C for the aqueous two-phase systems composed of dextran, polyethylene glycol, and water. The effects of polyethylene glycol and dextran molecular weight on phase separation are reported. These phase diagrams provide more complete data for dextran/PEG/water system, and will be needed for the correlation of biomolecule partitioning.  相似文献   

15.
Studies on the partition and purification of penicillin acylase from Escherichia coli osmotic shock extract were performed in poly(ethylene glycol)–sodium citrate systems. Partition coefficient behavior of the enzyme and total protein are similar to those described in other reports, increasing with pH and tie line length and decreasing with PEG molecular weight. However, some selectivity could be attained with PEG 1000 systems and long tie line at pH 6.9. Under these conditions 2.6-fold purification with 83% yield were achieved. Influence of pH on partition shows that is the composition of the system and not the net charge of the enzyme that determines the behaviour in these conditions. Addition of NaCl to PEG 3350 systems significantly increases the partition of the enzyme. Although protein partition also increased, purification conditions were possible with 1.5 M NaCl where 5.7-fold purification and 85% yield was obtained. This was possible due to the higher hydrophobicity of the enzyme compared to that of most contaminants proteins.  相似文献   

16.
In the present study, the partitioning of α-lactalbumin, β-lactoglobulin, and cheese whey proteins in aqueous two-phase system of polyvinylpyrrolidone-potassium phosphate is investigated. The partitioning of proteins in this system depends on the polymer and salt weight percents in feed, temperature, and pH. The orthogonal central composite design is used to study the effects of different parameters on partitioning of α-lactalbumin and β-lactoglobulin. A second order model is proposed to determine the impact of these parameters. The results of the model show that the weight percent of the salt in feed has a large effect on the protein partitioning. The weight percent of polyvinylpyrrolidone in the feed increases the partitioning coefficients. By increasing the temperature, the viscosity of polyvinylpyrrolidone is reduced and the protein can easily be transferred from one phase to the other phase. The pH of the aqueous two phase system can alter the protein partitioning coefficient through the variation of the protein net charge.  相似文献   

17.
18.
Using the molecular dynamics simulation, the role of lipids in the lysozyme transition into the aggregation-competent conformation has been clarified. Analysis of the changes of lysozyme secondary structure upon its interactions with the model bilayer membranes composed of phosphatidylcholine and its mixtures with phosphatidylglycerol (10, 40, and 80 mol%) within the time interval of 100 ns showed that lipid-bound protein is characterized by the increased content of β-structures. Along with this, the formation of protein–lipid complexes was accompanied by the increase in the gyration radius and the decrease in RMSD of polypeptide chain. The results obtained were interpreted in terms of the partial unfolding of lysozyme molecule on the lipid matrix, with the magnitude of this effect being increased with increasing the fraction of anionic lipids. Based on the results of molecular dynamics simulation, a hypothetical model of the nucleation of lysozyme amyloid fibrils in a membrane environment was suggested.  相似文献   

19.
Peroxiredoxin systems in plants were demonstrated involved in crucial roles related to reactive oxygenated species (ROS) metabolism and the linked cell signalling to ROS. Peroxiredoxins function as peroxidasic systems that combine at least a reactivating reductant agent like thioredoxins, and sometimes glutaredoxins and glutathion. In the past three years a number of peroxiredoxin structures were solved by crystallography in different experimental crystallisation conditions. The structures have revealed a significant propensity of peroxiredoxins for oligomerism that was confirmed by biophysical studies in solution using NMR and other methods as analytical ultra-centrifugation. These studies showed that quaternary structures of peroxiredoxins involve specific protein–protein interaction interfaces that rely upon the peroxiredoxin types and/or their redox conditions. The protein–protein interactions with the reactivating redoxins essentially lead to transient unstable complexes. We review herein the different protein–protein interactions characterized or deduced from those reports.VNM is recipient of a PhD fellowship of the French Ministère de l’Enseignement Supérieur de la Recherche et des Nouvelles Technologies for the year 2003–2006 and the Research Doctorate School of Chemistry of Lyon.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号