首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
The aceBAK operon was partially induced by a multicopy plasmid which carried the promoter region of the gene which encodes its repressor, iclR. Gel shift and DNase I analyses demonstrated that IclR binds to its own promoter. Disruption of iclR increased the expression of an iclR::lacZ operon fusion. Although aceBAK and iclR are both regulated by IclR, aceBAK expression responds to the carbon source, while expression of iclR does not.  相似文献   

4.
5.
6.
Regulated expression of a repressor protein: FadR activates iclR.   总被引:4,自引:0,他引:4       下载免费PDF全文
The control of the glyoxylate bypass operon (aceBAK) of Escherichia coli is mediated by two regulatory proteins, IclMR and FadR. IclMR is a repressor protein which has previously been shown to bind to a site which overlaps the aceBAK promoter. FAR is a repressor/activator protein which participates in control of the genes of fatty acid metabolism. A sequence just upstream of the iclR promoter bears a striking resemblance to FadR binding sites found in the fatty acid metabolic genes. The in vitro binding specificity of FadR, determined by oligonucleotide selection, was in good agreement with the sequences of these sites. The ability of FadR to bind to the site associated with iclR was demonstrated by gel shift and DNase I footprint analyses. Disruption of FadR or inactivation of the FadR binding site of iclR decreased the expression of an iclR::lacZ operon fusion, indicating that FadR activates the expression of iclR. It has been reported that disruption of fadR increases the expression of aceBAK. We observed a similar increase when we inactivated the FadR binding site of an iclR+ allele. This result suggests that FadR regulates aceBAK indirectly by altering the expression of IclR.  相似文献   

7.
8.
In Escherichia coli, a single operon encodes the metabolic and regulatory enzymes of the glyoxylate bypass. The metabolic enzymes, isocitrate lyase and malate synthase, are expressed from aceA and aceB, and the regulatory enzyme, isocitrate dehydrogenase kinase/phosphatase, is expressed from aceK. We cloned this operon and determined its functional map by deletion analysis. The order of the genes in this operon is aceB-aceA-aceK, with aceB proximal to the promoter, consistent with the results of previous experiments using genetic techniques. The promoter was identified by S1 nuclease mapping, and its nucleotide sequence was determined. Isocitrate lyase and malate synthase were readily identified by autoradiography after the products of the operon clone were labeled by the maxicell procedure and then resolved by electrophoresis. In contrast, isocitrate dehydrogenase kinase/phosphatase, expressed from the same plasmid, was undetectable. This observation is consistent with a striking downshift in expression between aceA and aceK.  相似文献   

9.
Comparative analysis of nucleotide sequences of genes participating in melibiose fermentation and isocitrate lyase production was conducted in 90 natural Yersinia pestis strains of main and non main subspecies. It was ascertained that the lack of the ability to utilize disaccharide melibiose in strains of the main subspecies is caused by integration of the insertion sequence IS285 at 73 bp from the beginning of the structural gene melB that encodes the transport protein galactoside permease. In contrast, strains of non main subspecies (caucasica, altaica, and ulegeica) contain the intact gene melB and are capable of fermenting melibiose. Differences in the manifestation of the other differential trait, production of isocitrate lyase, are connected with the presence of mutation (insertion of two nucleotides +CC) in the regulatory gene iclR encoding repressor protein of the acetate operon, which is the reason for constitutive synthesis of this enzyme. Strains of non main subspecies do not contain mutations in gene iclR, and this correlates in these strains with their capacity for inducible synthesis of isocitrate lyase.  相似文献   

10.
A family of kinetic models has been developed that takes into account available experimental information on the regulation of ace operon expression in Escherichia coli. This has allowed us to study and analyze possible versions of regulation of the ace operon and to test their possibilities. Based on literature analysis, we found that there is an ambiguity of properties of IclR (main repressor of ace operon). The main aspect of this ambiguity are two different forms of IclR purified from E. coli K strain and different coeffector sets for IclR purified from E. coli K and B strains. It has been shown that the full-length form of IclR is physiologically relevant and that IclR truncation is a result of purification of the protein from E. coli K strains. We also found that the IclR protein purified from E. coli B strain carries two coeffector binding sites. Using model-developed levels of steady state aceBAK expression against physiological ranges of coeffectors, concentration has been predicted.  相似文献   

11.
IclR protein, the repressor of the aceBAK operon of Escherichia coli, has been examined by time-of-flight mass spectrometry, with ionization by matrix assisted laser desorption or by electrospray. The purified protein was found to have a smaller mass than that predicted from the base sequence of the cloned iclR gene. Additional measurements were made on mixtures of peptides derived from IclR by treatment with trypsin and cyanogen bromide. They showed that the amino acid sequence is that predicted from the gene sequence, except that the protein has suffered truncation by removal of the N-terminal eight or, in some cases, nine amino acid residues. The peptide bond whose hydrolysis would remove eight residues is a typical target for the E. coli protease OmpT. We find that, by taking precautions to minimize Omp T proteolysis, or by eliminating it through mutation of the host strain, we can isolate full-length IclR protein (lacking only the N-terminal methionine residue). Full-length IclR is a much better DNA-binding protein than the truncated versions: it binds the aceBAK operator sequence 44-fold more tightly, presumably because of additional contacts that the N-terminal residues make with the DNA. Our experience thus demonstrates the advantages of using mass spectrometry to characterize newly purified proteins produced from cloned genes, especially where proteolysis or other covalent modification is a concern. This technique gives mass spectra from complex peptide mixtures that can be analyzed completely, without any fractionation of the mixtures, by reference to the amino acid sequence inferred from the base sequence of the cloned gene.  相似文献   

12.
基因的表达受不同的转录调节因子调节。大肠杆菌中的异柠檬酸裂解酶调节因子(IclR)能够抑制编码乙醛酸支路酶的aceBAK操纵子的表达。本研究基于代谢物的13C同位体物质分布来定量解析代谢反应,主要研究了iclR基因在大肠杆菌生理和代谢中的作用。大肠杆菌iclR基因缺失突变株的生长速率、糖耗速率和乙酸的产量相对于原始菌株都有所降低,但菌体得率略有增加。通过代谢途径的流量比率分析发现基因缺失株的乙醛酸支路得到了激活,33%的异柠檬酸流经了乙醛酸支路;戊糖磷酸途径的流量变小,使得CO2的生成量减少。同时,乙醛酸支路激活,但草酰乙酸形成磷酸烯醇式丙酮酸的流量基本不变,说明磷酸烯醇式丙酮酸-乙醛酸循环没有激活,没有过多的碳原子在磷酸烯醇式丙酮酸羧化激酶反应中以CO2形式排出,从而确保了菌体得率。葡萄糖利用速率的降低、乙酰辅酶A的代谢效率提高等使得iclR基因敲除菌的乙酸分泌较原始菌株有所降低。  相似文献   

13.
In Escherichia coli, expression of the glyoxylate bypass operon appears to be controlled, in part, by the product of iclR+. Mutations in iclR have been found to yield constitutive expression of this operon, suggesting that iclR+ encodes a repressor protein. We have cloned iclR+ by taking advantage of its tight genetic linkage with the glyoxylate bypass operon. The clone complemented a mutant allele of iclR in trans, restoring an inducible phenotype for this operon. Deletion analysis identified a region of ca. 900 base pairs that was necessary and sufficient for complementation. The nucleotide sequence of the insert was then determined. Translation of this sequence revealed an open reading frame capable of encoding a protein with Mr 29,741 preceded by a potential Shine-Dalgarno ribosome-binding site. The deduced amino acid sequence includes a region at the amino terminus that may form a helix-turn-helix motif, a structure found in many DNA-binding domains.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号