首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The primary molecules for mediating the innate immune response are the Toll-like family of receptors (TLRs). Recent work has established that amyloid-beta (Aβ) fibrils, the primary components of senile plaques in Alzheimer's disease (AD), can interact with the TLR2/4 accessory protein CD14. Using antibody neutralization assays and tumor necrosis factor alpha release in the human monocytic THP-1 cell line, we determined that both TLR2 and TLR4 mediated an inflammatory response to aggregated Aβ(1–42). This was in contrast to exclusive TLR ligands lipopolysaccharide (LPS) (TLR4) and tripalmitoyl cysteinyl seryl tetralysine (Pam3CSK4) (TLR2). Atomic force microscopy imaging showed a fibrillar morphology for the proinflammatory Aβ(1–42) species. Pre-treatment of the cells with 10 μg/mL of a TLR2-specific antibody blocked ∼50% of the cell response to fibrillar Aβ(1–42), completely blocked the Pam3CSK4 response, and had no effect on the LPS-induced response. A TLR4-specific antibody (10 μg/mL) blocked ∼35% of the cell response to fibrillar Aβ(1–42), completely blocked the LPS response, and had no effect on the Pam3CSK4 response. Polymyxin B abolished the LPS response with no effect on Aβ(1–42) ruling out bacterial contamination of the Aβ samples. Combination antibody pre-treatments indicated that neutralization of TLR2, TLR4, and CD14 together was much more effective at blocking the Aβ(1–42) response than the antibodies used alone. These data demonstrate that fibrillar Aβ(1–42) can trigger the innate immune response and that both TLR2 and TLR4 mediate Aβ-induced tumor necrosis factor alpha production in a human monocytic cell line.  相似文献   

3.
The afferent output from the bladder is important for triggering micturition. This study identifies different types of afferent nerve and explores the connections of their collateral fibres on intramural ganglia and potential ganglionic targets. The experiments were performed on tissues from male guinea-pigs (n=16). Fibres positive for choline acetyl transferase (ChAT+) were found to originate close to the urothelium, to transit the sub-urothelial interstitial cell layer and to pass into the lamina propria. A different population of fibres, immunopositive for calcitonin gene-related peptide (CGRP), capsaicin receptors or neurofilament protein (NF), were seen to intertwine with the ChAT+ fibres in the lamina propria. The ChAT+ fibres did not express NF. Ganglia with ChAT+ and NF+ neurones were found in the lamina propria and muscle. ChAT+ fibres, with pronounced terminal varicosities, were present on the nerve cell bodies. Two types were noted: NF+ terminals and those with little or no NF (NF) suggesting that their origins were the ChAT+ afferent collaterals and the adjacent ganglia. Fibres containing CGRP or substance P were seen on the ganglionic cells. α1B adrenergic receptors were also found on the neurones indicative of adrenergic synapses. Thus, the ganglia had multiple inputs. Different types of ChAT+ nerves were seen in the muscle: NF+ and NF. The ChAT+/NF+ nerves may represent a ganglionic output to the muscle. This complex neuronal network may therefore represent the elements generating and modulating bladder sensations. The role of such a scheme in bladder pathology and the therapeutic sites of action of anticholinergic and sympathomimetic drugs are discussed.We gratefully acknowledge the support of Pfizer. This work was supported by a grant from the Detrol Research Programme.  相似文献   

4.
The effect of amytal on energy metabolism and acid secretion in an isolated gastric mucosa of the guinea-pig were studied. Determination of adenine nucleotides, creatine phosphate, pyruvate and lactate in the gastric mucosa showed that amytal depressed the levels of ATP, creatine phosphate and energy charge with elevation of the AMP and pyruvate levels. This treatment inhibited concomitantly acid secretion and active chloride transport detected by short circuit current. The addition of menadione with ascorbate to the medium in the presence of amytal partially restored ATP and energy charge levels and also induced a partial recovery of acid secretion and active chloride transport. These results suggest that ATP is a direct energy donor for acid secretion in the gastric mucosa of the guinea-pig.  相似文献   

5.
Summary Treatment of chickens, hamsters and guinea-pigs with large doses of the long-acting antisecretory agent omeprazole for 10 weeks resulted in elevated serum gastrin levels and in increased stomach weight and mass of oxyntic mucosa. Also the antral gastrin cell density was increased. Another striking effect was the hyperplasia of the histamine-producing enterochromaffin-like (ECL) cells — a prominent endocrine cell population with unknown function — in the oxyntic mucosa. Accordingly, the gastric mucosal histamine concentration and rate of histamine formation were increased in all three species. The results suggest that marked and long-lasting suppression of acid secretion leads to elevated serum gastrin levels and diffuse ECL cell hyperplasia not only in the rat, as previously seen, but also in the chicken, hamster and guinea-pig; this hyperplasia is associated with accelerated histamine formation in all three species. The following sequence of events is suggested to occur in mammalian as well as submammalian vertebrates: suppression of acid secretion — hypergastrinaemia — ECL cell hyperplasia.  相似文献   

6.
7.
8.
9.
10.
11.
12.
β-Interferons (IFN-βs) represent one of the first line treatments for relapsing-remitting multiple sclerosis, slowing disease progression while reducing the frequency of relapses. Despite this, more effective, well tolerated therapeutic strategies are needed. Cannabinoids palliate experimental autoimmune encephalomyelitis (EAE) symptoms and have therapeutic potential in MS patients although the precise molecular mechanism for these effects is not understood. Toll-like receptor (TLR) signaling controls innate immune responses and TLRs are implicated in MS. Here we demonstrate that the synthetic cannabinoid R(+)WIN55,212-2 is a novel regulator of TLR3 and TLR4 signaling by inhibiting the pro-inflammatory signaling axis triggered by TLR3 and TLR4, whereas selectively augmenting TLR3-induced activation of IFN regulatory factor 3 (IRF3) and expression of IFN-β. We present evidence that R(+)WIN55,212-2 strongly promotes the nuclear localization of IRF3. The potentiation of IFN-β expression by R(+)WIN55,212-2 is critical for manifesting its protective effects in the murine MS model EAE as evidenced by its reduced therapeutic efficacy in the presence of an anti-IFN-β antibody. R(+)WIN55,212-2 also induces IFN-β expression in MS patient peripheral blood mononuclear cells, whereas down-regulating inflammatory signaling in these cells. These findings identify R(+)WIN55,212-2 as a novel regulator of TLR3 signaling to IRF3 activation and IFN-β expression and highlights a new mechanism that may be open to exploitation in the development of new therapeutics for the treatment of MS.  相似文献   

13.
14.
A gas chromatographic–mass spectrometric method was developed for the quantitative analysis of the three Di(2-ethylhexyl)phthalate (DEHP) metabolites, 2-ethylhexanoic acid, 2-ethyl-3-hydroxyhexanoic acid and 2-ethyl-3-oxohexanoic acid in urine. After oximation with O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine hydrochloride and sample clean-up with Chromosorb P filled glass tubes, all three organic acids were converted to their tert.-butyldimethylsilyl derivatives. Quantitation was done with trans-cinnamic acid as internal standard and GC–MS analysis in the selected ion monitoring mode (SIM). Calibration curves for all three acids in the range from 20 to 1000 μg/l showed correlation coefficients from 0.9972 to 0.9986. The relative standard deviation (RSD) values determined in the observed concentration range were between 1.3 and 8.9% for all three acids. Here we report for the first time the identification of 2-ethyl-3-hydroxyhexanoic acid and 2-ethyl-3-oxohexanoic acid in human urine next to the known DEHP metabolite 2-ethylhexanoic acid. In 28 urine samples from healthy persons we found all three acids with mean concentrations of 56.1±13.5 μg/l for 2-ethylhexanoic acid, 104.8± 80.6 μg/l for 2-ethyl-3-hydroxyhexanoic acid and 482.2± 389.5 μg/l for 2-ethyl-3-oxohexanoic acid.  相似文献   

15.
Like adult heads and whole flies, larval brains of wild type Drosophila melanogaster contain two major soluble cyclic nucleotide phosphodiesterases, forms I and II. Larval brains of the learning-defective mutant strain, dunceM11, contain only the form I enzyme. In both wild type and dunce strains the form I enzyme is activated by Ca2+/calmodulin. A time-dependent loss of this Ca2+ activation was observed.  相似文献   

16.
Knoll J  Miklya I  Knoll B 《Life sciences》2002,71(18):2137-2144
R-(-)-1-(Benzofuran-2-yl)-2-propylaminopentane HCl, (-)-BPAP, the recently developed selective and much more potent catecholaminergic/serotoninergic enhancer (CAE/SAE) substance than (-)-deprenyl enhances the performance of midbrain neurons, both in vivo and ex vivo, in a characteristic complex manner, presenting one bell shape dose/concentration effect curve in the low nanomolar range and another at higher micromolar range. For example, 4.7 +/- 0.10 nmol/g wet weight noradrenaline was released within 20 min from the quickly removed locus coeruleus of saline treated rats. This amount was increased 30 min after the subcutaneous administration of 0.0005 mg/kg (-)-BPAP to 15.4 +/- 0.55 nmol/g (P < 0.001). However, following the injection of a hundred times higher, 0.05 mg/kg, dose of (-)-BPAP, the amount of noradrenaline (4.3 +/- 0.25 nmol/g) released from the locus coeruleus did not differ from the control value. In ex vivo experiments, when the isolated locus coeruleus was soaked in an organ bath containing (-)-BPAP, the release of noradrenaline was significantly enhanced from 10(-16) M concentration, reached a peak effect at 10(-13) M concentration, but 10(-10) M (-)-BPAP was ineffective. A significant enhancer effect was detected also in the high concentration range from 10(-8) M, the peak effect was reached at 10(-6) M concentration and 10(-5) M (-)-BPAP was ineffective. (-)-BPAP enhanced in the low concentration range the performance of dopaminergic and serotoninergic neurons with a peak effect at 10(-13) and 10(-12) M concentration, respectively. The results with (-)-BPAP, the highly specific artificial enhancer substance, suggest that (i) high and low affinity "enhancer" receptors may exist in the brain, and (ii) that they may be identified with the recently cloned family of the "trace amine" receptors, activated by beta-phenylethylamine and tryptamine, the prototypes of the endogenous enhancer substances.  相似文献   

17.
This retrospective review on discoveries of the roles of oxidative stress in brain of subjects with Alzheimer disease (AD) and animal models thereof as well as brain from animal models of chemotherapy-induced cognitive impairment (CICI) results from the author receiving the 2013 Discovery Award from the Society for Free Radical Biology and Medicine. The paper reviews our laboratory’s discovery of protein oxidation and lipid peroxidation in AD brain regions rich in amyloid β-peptide (Aβ) but not in Aβ-poor cerebellum; redox proteomics as a means to identify oxidatively modified brain proteins in AD and its earlier forms that are consistent with the pathology, biochemistry, and clinical presentation of these disorders; how Aβ in in vivo, ex vivo, and in vitro studies can lead to oxidative modification of key proteins that also are oxidatively modified in AD brain; the role of the single methionine residue of Aβ(1–42) in these processes; and some of the potential mechanisms in the pathogenesis and progression of AD.CICI affects a significant fraction of the 14 million American cancer survivors, and due to diminished cognitive function, reduced quality of life of the persons with CICI (called “chemobrain” by patients) often results. A proposed mechanism for CICI employed the prototypical ROS-generating and non-blood brain barrier (BBB)-penetrating chemotherapeutic agent doxorubicin (Dox, also called adriamycin, ADR). Because of the quinone moiety within the structure of Dox, this agent undergoes redox cycling to produce superoxide free radical peripherally. This, in turn, leads to oxidative modification of the key plasma protein, apolipoprotein A1 (ApoA1). Oxidized ApoA1 leads to elevated peripheral TNFα, a proinflammatory cytokine that crosses the BBB to induce oxidative stress in brain parenchyma that affects negatively brain mitochondria. This subsequently leads to apoptotic cell death resulting in CICI. This review outlines aspects of CICI consistent with the clinical presentation, biochemistry, and pathology of this disorder. To the author’s knowledge this is the only plausible and self-consistent mechanism to explain CICI.These two different disorders of the CNS affect millions of persons worldwide. Both AD and CICI share free radical-mediated oxidative stress in brain, but the source of oxidative stress is not the same.Continued research is necessary to better understand both AD and CICI. The discoveries about these disorders from the Butterfield Laboratory that led to the 2013 Discovery Award from the Society of Free Radical and Medicine provide a significant foundation from which this future research can be launched.  相似文献   

18.
19.
Clinical evidence from paediatric neurology supports the possibility that a protracted inflammatory state in the central nervous system (CNS) may enhance the predisposition of brain tissue to develop seizures. Consequently, non-steroidal anti-inflammatory drugs (NSAIDs) as well as selective cyclooxygenase-2 (COX-2) inhibitors were expected to positively modulate seizure susceptibility during a systemic inflammatory response. Nevertheless, experimental findings and clinical evidence provide controversial results. As a possible explanation for these apparent discrepancies, it is hypothesised that the amount of prostaglandin E2 (PGE2) induced in the immature brain parenchyma during systemic inflammatory response is crucial since PGE2 plays a dual role. Indeed, on the one hand, this prostaglandin increases seizure susceptibility by stimulation of glutamate release from neurons and astrocytes. On the other hand, however, the same prostaglandin induces a massive release of corticosterone, being this hormone known to inhibit efficiently the seizure susceptibility of the immature brain. Hence, the dose-response curve of any given NSAID/COX-2 inhibitor on seizure susceptibility is expected to show different patterns, depending on the amount of PGE2 levels produced in the brain parenchyma during the effect of drug. The proposed hypothesis also suggests that mild to moderate increase of PGE2 levels in the immature brain parenchyma may act as a ‘preconditioning’ stimulus, i.e., it may confer a transient resistance to develop seizure-induced brain injury, besides to efficiently counteract seizure susceptibility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号