首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A mutant strain of Escherichia coli suppressed a frameshift and some UAG, UAA, and UGA mutants of bacteriophage T4 at 37° C but not at 31° C. This suppression was inhibited by the addition of thymine or thymidine to the medium used to test phage growth. Furthermore, the suppressor strain required thymine or thymidine for growth on minimal medium at 43° C and if this auxotrophy was removed by reversion or recombination the strain no longer suppressed. These results suggest a link between thymidine nucleotide biosynthesis and suppression.  相似文献   

2.
Summary Strains of Escherichia coli carrying mutD5 display very high mutation rates (about 104-fold above wild-type) when grown in rich medium, but relatively low mutation rates (about 10- to 50-fold above wild-type) in minimal medium. Thymidine, deoxycytidine, and deoxyuridine are all capable of stimulating mutation when added to minimal medium. Studies with mutants blocked in various steps of thymidine metabolism implicate a phosphorylated thymidine effector which mediates the mutagenic action of the added deoxyribonucleotides. In addition, an unidentified compound or compounds other than thymidine present in rich medium (L-broth) can also increase the mutation rate.  相似文献   

3.
In order to obtain basic knowledge of the salvage pathways for DNA synthesis, the ability of Brevibacterium ammoniagenes ATCC 6872 and Micrococcus luteus ATCC 15932 for incorporation of nucleobases and nucleosides was investigated. Only adenine and uracil are incorporated by B. ammoniagenes, whereas M. luteus additionally can utilize deoxyadenosine and, less efficiently, thymidine. In M. luteus, the demonstration of deoxyadenosine kinase and thymidine kinase explains the incorporation data. Uptake of thymidine is of short duration because of rapid breakdown of exogenously supplied thymidine to thymine. At a 540-fold excess pyrimidine deoxyribonucleosides inhibit 14C incorporation from thymidine nearly totally and purine deoxyribonucleosides cut by half the uptake rate, probably by interfering with transport of thymidine. However, as no cessation of thymidine incorporation occurs at these concentrations of purine deoxyribonucleosides, incorporation is finally enhanced. During the initial period of this reduced uptake considerable protection of thymidine from breakdown to thymine is provided by deoxyguanosine, but not by deoxyadenosine. At a 108-fold excess there is actually no inhibition of thymidine uptake by deoxyguanosine and only an insignificant impairment by deoxyadenosine resulting in an ultimate enhancement of 14C incorporation up to 20% of the exogenously supplied thymidine. As there is no salvage pathway for thymidine in B. ammoniagenes due to the absence of thymidine kinase, labelling with adenine and hydrolyzing of the 'contaminated' RNA fraction with 1 M KOH is recommended for measurements of overall DNA synthesis in this strain.  相似文献   

4.
The activities of enzymes involved in the consecutive phosphorylation of thymidine were revealed in the gonad extracts of marine invertebrates. Along with thymidine kinase activity, thymidilate kinase activity was revealed in all the studied species; however, the specific activities of nucleoside and nucleotide kinases varied in different species of mollusks, sea stars and sea urchins. Thymidine and thymidilate kinases were isolated from the gonads of the scallop Mizuhopecten yessoensis and some of their enzymat properties were studied. The thymidine kinase of M. yessoensis catalyzed the phosphorylation of thymidine and deoxycytidine at a lesser rate, but didn’s use purine ribo-and deoxyribonucleosides or pyrimidine ribonucleosides as phosphate acceptors. The thymidilate kinase carried out both TMP and dCMP phosphorylation. As well as ATP, the enzymes of M. yessoensis were also able to use dATP, dGTP, GTP, UTP and CTP as donors of phosphate groups. The thymidine kinase activity was inhibited by TMP, TTP and dCTP.  相似文献   

5.
6.
Previous workers reported that the T4 bacteriophage UvsX protein could promote neither RecA-LexA-mediated DNA repair nor induction of lysogenized bacteriophage, only recombination. Reexamination of these phenotypes demonstrated that, in contrast to these prior studies, when this gene was cloned into a medium but not a low-copy-number vector, it stimulated both a high frequency of spontaneous induction and mitomycin C-stimulated bacteriophage induction in a strain containing a recA13 mutation, but not a recA1 defect. The gene when cloned into a low- or medium- copy-number vector also promoted a low frequency of recombination of two duplicated genes in Escherichia coli in a strain with a complete recA gene deletion. These results suggest that a narrow concentration range of T4 UvsX protein is required to promote both high-frequency spontaneous and mitomycin C-stimulated bacteriophage induction in a recA13 gene mutant, but it facilitates recombination of duplicated genes at only a very low frequency in E. coli RecA mutants with a complete recA deletion. These results also suggest that the different UvsX phenotypes are affected differentially by the concentration of UvsX protein present. Received: 11 February 2002 / Accepted: 12 April 2002  相似文献   

7.
Amber mutants of bacteriophage T4 have been isolated that induce thymidine kinase activity only after infection of a strain of Escherichia coli carrying a suppressor mutation. The activity induced when one of these mutants infected this suppressor strain is much more heat sensitive than the activity induced by wild-type T4. This indicates that this amber mutation lies within the structural gene for thymidine kinase. This gene is between fI and v on the standard T4 genetic map. A mutant of tt4 that is unable to induce thymidine kinase activity incorporates only about one-eighth as much thymidine into its DNA as phage that do induce thymidine kinase. This contrasts to the findings that the total thymidine kinase activity in extracts prepared from cells infected with phage able to induce thymidine kinase in only twice as great as the activity in cells infected with the mutant unable to induce the enzyme.  相似文献   

8.
Amber mutants of bacteriophage T4 have been isolated that induce thymidine kinase activity only after infection of a strain of Escherichia coli carrying a suppressor mutation. The activity induced when one of these mutants infected this suppressor strain is much more heat sensitive than the activity induced by wild-type T4. This indicates that this amber mutation lies within the structural gene for thymidine kinase. This gene is between fI and v on the standard T4 genetic map. A mutant of tt4 that is unable to induce thymidine kinase activity incorporates only about one-eighth as much thymidine into its DNA as phage that do induce thymidine kinase. This contrasts to the findings that the total thymidine kinase activity in extracts prepared from cells infected with phage able to induce thymidine kinase in only twice as great as the activity in cells infected with the mutant unable to induce the enzyme.  相似文献   

9.
THE frog embryo cell line ICR 2A is the first established haploid vertebrate cell line1. In haploid cells recessive mutations should be detectable at a frequency 106 to 109 times greater than expected in diploid cells; mutagen treatment should increase the yield further. These predictions are useful to test whether variants arising in culture are the result of gene mutation. To apply this test to frog cells, mutations for thymidine kinase were sought. Such mutants were first obtained by exposing mouse L cells to the thymidine analogue 5-bromodeoxyuridine (BUdR); a loss of thymidine kinase activity prevented the lethal incorporation of BUdR into DNA2. The new phenotype was considered to be the result of gene mutation because of its heritability and eventually because of data from Luria-Delbrück fluctuation analyses3 (a test of the spontaneity or non-inducibility of a process, not its cause). The question of origin was further complicated by a number of factors: (1) the necessity of a long, repeated, exposure to BUdR2; (2) the high mutation rate (up to 10?3) compared with bacterial mutants (10?910?6)4,5; and (3) the presence of resistant clones with intermediate enzyme levels4,5.  相似文献   

10.
WhenEscherichia coli harbouring theppm (earlier calledadi) mutation and the F′lacZU118 episome is subjected to lactose selection in the presence of suboptimal concentrations of glycerol, Lac+ colonies emerge after 5–6 days. They are shown to harbour an ochre suppressor mutation at 15.15 min. Inactivation ofrecA results in approximately four-fold reduction in the response. In theppm — ochre suppressor double mutant background the leakiness of thelacZ allele carried by F′ CC105 is enhanced, suggesting misreading of a valine codon (GUG) as glutamic acid codon (GAG). This is accompanied by reversion of thelacZ mutation tolacZ + (GTG → GAG). In LB medium both the leakiness and reversion are inhibited by streptomycin. Inactivation ofrecA did not affect leakiness but abolished reversion. These data are discussed in relation to the importance of allele leakiness and restricted growth in stationary-phase (adaptive) mutagenesis.  相似文献   

11.
Inability to grow on deoxyribonucleosides as the sole carbon source is characteristic of deo mutants of Escherichia coli. Growth of deoC mutants, which lack deoxyribose 5-phosphate aldolase, is reversibly inhibited by deoxyribonucleosides through inhibition of respiration. By contrast, deoB mutants are not sensitive to deoxyribonucleosides, and deoxyribose 5-phosphate aldolase and thymidine phosphorylase are present at normal levels but are not inducible by thymidine. Organisms with the genotype deoB(-)thy(-) or deoC(-)thy(-) are able to grow on low levels of thymine, whereas deoB(+)thy(-) or deoC(+)thy(-) strains require high levels of thymine for growth. The deoB and deoC mutations are transducible with and map on the counterclockwise side of the threonine marker. They are closely linked to deoA, a gene determining thymidine phosphorylase. Merodiploids heterozygous for either the deoB or deoC genes are resistant to deoxyribonucleosides and, in combination with the thy mutation, require high levels of thymine for growth. Cultures of thy(+)deoC(-) mutants are inhibited by thymidine until this compound has been completely degraded and excreted as deoxyribose and thymine, whereupon growth promptly resumes at a normal rate. The inhibition of respiration in deoC strains and the induction of thymidine phosphorylase and deoxyribose 5-phosphate aldolase in the wild-type organism are considered to result from the accumulation of deoxyribose 5-phosphate.  相似文献   

12.
Summary The effect of photoreactivation of the ultraviolet radiation induced reversion of a trpE9777 frameshift mutation was studied in a uvrA6 derivative of Escherichia coli K12. Two different photoreactivation treatments were used, one providing a single flash of photoreactivating light and another providing 10 min of light from fluorescent lamps. The reversion frequency of the trpE9777 frameshift mutation was strongly reduced when subsequently exposed to visible light. The dose modification factor (the ratio of equally effective doses), for cells challenged with single-flash photoreactivation, for survival and induction of reversion to Trp+ was 3.6 and 3.4, respectively. UV induction of RecA protein synthesis was not reversed by a single flash of photoreactivation. The dose modification factor for 10 min of fluorescent lamp photoreactivation for survival and for induction of reversion to Trp+ was 6.5 and 6.3, respectively. The dose modification factor for 10 min of photoreactivation for induction of RecA protein was 1.7–2.5. Photoreactivation decreased the reversion of trpE9777 and increased survival to the same extent. We concluded that cyclobutyl pyrimidine dimers are the premutagenic lesions of UV mutagenesis of the trpE9777 allele in a uvrA6 background.  相似文献   

13.
The uptake of thymidine in sea urchin eggs is considered in terms of its specificity, the cortical reaction, and the increase of intracellular pH following fertilization. The rate of uptake increases greater than 50-fold after fertilization. All deoxyribonucleosides and ribonucleosides tested compete with thymidine for transport sites. Free pyrimidine and purine bases, deoxyribonucleotides, and amino acids do not compete, showing that the specificity of this uptake lies at the nucleoside level. Uptake may be turned on in unfertilized eggs by treatment with ammonia, a treatment known to by-pass the cortical reaction and raise intracellular pH. However, when compared with uptake in fertilized eggs, it proceeds later and at a lower rate. Both of these deficiencies are overcome by fertilizing the ammonia-treated eggs or treating them with butyric acid or ionophore A23187. These treatments induce the cortical reaction and stimulate an immediate and complete turn-on of thymidine uptake. Superseding these apparent involvements of the cortical reaction and mtracellular pH in thymidine uptake is an extremely strict requirement for extracellular Na+.  相似文献   

14.
A spontaneous white mutation recovered in Drosophila mauritiana is unstable and reverts to normal eye color at a frequency greater than 4 per 1,000 ×-chromosomes. Germ line reversion occurs at a high rate in D. mauritiana males and in interspecific hybrid females, while the rate is depressed in D. mauritiana females. These events are not restricted to the germ line, as cases of variegated patterns of eye pigmentation, indicating somatic reversion, are recovered at a frequency comparable to that of the male germ line reversion rate. Germ line reversion events are genetically stable, while the somatic variegation patterns are not heritable. The patterns of eye pigment variegation produced suggests that reversion events are occurring throughout development. Whole genome DNA digests blotted and probed with the cloned D. melanogaster white gene indicate that this unstable white mutation in D. mauritiana is associated with an insertion of DNA that is lost upon reversion to wild type, indicating that this DNA insert is in fact a transposable element.  相似文献   

15.
16.
Summary A UV-revertible mutant of the nar1 structural gene for nitrate reductase was isolated in wildtype (nar + nir +) Ustilago maydis. It proved to be vigorously revertible by gamma rays as well. Genetic analysis revealed that the strain carried a single, nonleaky, recessive allele (nar1-m) with an unusually high spontaneous reversion rate (3×10-5/div.). Reliable reversion frequencies were determined with a special agar medium that reduced the normally high level of residual growth observed on nitrate minimal agar. Radiation-induced reversion frequencies in the homozygous diploid were approximately twice those in the hapliod. Following crosses to wild type, two revertants (one spontaneous and one UV-induced) were found to map at nar1. Although the molecular basis of nar1-m reversion is not known, available data suggest that some form of point mutation is involved.  相似文献   

17.
Summary Using gel filtration chromatography, we find a single peak of deoxythymidine phosphorylating activity in Chlamydomonas reinhardti. This activity has characteristics of a thymidine kinase, in that (1) it will utilize ATP (or dATP) or CTP (or dCTP) as phosphoryl donor, but not AMP or phenyl phosphate, and (2) it is inhibited by dTTP (and less so by dTDP, dUTP, and dUDP) but is unaffected by 3–5 cyclic AMP.Partially purified Chlamydomonas thymidine kinase has a pH optimum near 8.5, and a molecular weight of 80,000 to 85,000 daltons. Kinetic studies indicate a ping-pong mechanism with a Km for thymidine of 1.5x10-7 moles per liter. 5-Bromo-and 5-fluorodeoxyuridine, and to a lesser degree deoxyuridine, are competitive inhibitors, but significant phosphorylation of these nucleosides could not be demonstrated in vitro by thymidine kinase.While thymidine is phosphorylated to dTMP by crude Chlamydomonas extracts, greater than 80% of the product formed by the partially purified enzyme is dTTP. Further, the gel filtration elution position of the single deoxythymidylate kinase activity present in cell extracts coincides with that of thymidine kinase. These results suggest that a multifunctional enzyme, rather than three separate phosphorylating activities, may be responsible for dTTP formation.Abbreviations MES 2(N-morpholino) ethanesulfonic acid - TES N-tris (hydroxymethyl) methyl-2-amino ethanesulfonic acid - tris tris-hydroxyamino methane - NEM N-ethyl maleimide - PEI polyethyleneimine - TLC thin-layer chromatography; nucleotides abbreviated by CBN rules  相似文献   

18.
M. M. Green 《Genetica》1959,29(1):1-38
Summary Following the discussion and examination of relevant experimental observations, it is proposed that the identity between spontaneous phenotypic reversion and reverse (back) mutation is established only after a number of criteria are fulfilled. These criteria include the demonstration that the reverting mutant itself as well as the reversions are not associated with chromosomal rearrangements, that reversion occurrs in the absence of crossing over, that independent suppressor or modifier mutants are not involved, that the phenonomenon of gene conversion does not occur and that the reversion represents and autonomous event.Previously reported instances of partial and complete phenotypic reversions, especially those inDrosophila, are discussed and evaluated in terms of the aforementioned criteria.Detailed, critical data are presented showing that in terms of the listed criteria the sex-linked, recessive bristle mutantsf 1 andf 3n inDrosophila melanogaster undergo reverse mutation at characteristic rates.The relationship between reverse mutation and the nature of the gene is discussed. It is concluded that the facts of reverse mutation fit best the concept of a particulate gene.  相似文献   

19.
Transplantable SV40-transformed hamster cells cultivated in the presence of low concentrations of BrdU for prolonged periods of time and cells made deficient in the enzyme thymidine kinase (dTK) by continued exposure to BrdU became less tumorigenic. In both instances, when grown in BrdU the cells contained analog substituted DNA. The tumorigenicity of dTK+ cells exposed to low concentrations of BrdU, but not the dTK? cells, returned to control values when the cells were grown in medium devoid of BrdU. A tumorigenic mouse cell line made dTK deficient also had diminished oncogenicity. However, transformed hamster cells made deficient in another salvage pathway enzyme, hypoxanthineguanine phosphoribosyl-transferase by growth in eight azaguanine, retained their tumorigenicity. Two of five revertant cell lines, in which thymidine kinase activity was restored, transplanted more readily to hamsters than the dTK? cells from which they were derived. It is concluded that there is a relative loss of tumorigenicity when BrdU is incorporated into the DNA of tumorigenic cell lines, or when there is a genetic modification of thymidine kinase activity.  相似文献   

20.
Earlier studies showed that the 2-aminopurine-induced mutation rate at a particular base pair can be influenced by the base adjacent to, or one additional base-pair removed from, the measured site (Koch, 1971). The present study extends to 0.3 map unit (about 30 base pairs) the distance at which a single base-pair substitution can exert such an effect. A particular base-pair substitution (defined as a ts mutation in the rIIA gene of bacteriophage T4) reduces the spontaneous, 2-aminopurine-induced and nitrous acid-induced reversions of an rIIA amber mutation approximately threefold. The ts mutation also reduces the 2-aminopurine-induced conversion of the corresponding ochre codon to amber (UAA → UAG) about twofold and to opal (UAA → UGA) about eightfold. The 2-aminopurine-induced reversion of the ochre codon to a glutamine codon (UAA → CAA), however, is not affected. Control experiments demonstrate that these observed reductions in mutation frequency do not result from unacceptable pathways of reversion in the presence of the ts allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号