首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A soluble high affinity binding unit for leukotriene (LT) C4 in the high speed supernatant of rat liver homogenate was characterized at 4 degrees C as having a single type of saturable affinity site with a dissociation constant of 0.77 +/- 0.27 nM (mean +/- S.E., n = 5). The binding activity was identified as the liver cytosolic subunit 1 (Ya) of glutathione S-transferase, commonly known as ligandin, by co-purification with the catalytic activity during DEAE-cellulose column chromatography and 11,12,14,15-tetrahydro-LTC4 (LTC2)-affinity gel column chromatography; resolution into two major bands by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of Mr 23,000 and 25,000, of which only the smaller protein was labeled with [3H]LTC4 coupled via a photoaffinity cross-linking reagent; and immunodiffusion analysis with rabbit antiserum to glutathione S-transferase which showed a line of identity between the purified LTC4-binding protein and rat liver glutathione S-transferase. The affinity-purified binding protein bound 800 pmol of [3H] LTC4/mg of protein and possessed 12 mumol/min/mg of glutathione transferase activity as assayed with 1-chloro-2,4-dinitrobenzene as substrate. The enzyme activity of the cytosolic LTC4-binding protein was inhibited by submicromolar quantities of unlabeled LTC4, and the binding activity for [3H]LTC4 was blocked by the ligandin substrates, hematin and bilirubin. The high affinity interaction between LTC4 and glutathione S-transferase suggests that glutathione S-transferase may have a role in LTC4 disposition and that previous studies of LTC4 binding to putative receptors in nonresponsive tissues may require redefinition of the binding unit.  相似文献   

2.
The subcellular distribution of specific binding sites for [3H]leukotriene C4 ([3H]LTC4) was analyzed after sedimentation of organelles from disrupted bovine aortic endothelial cells on sucrose density gradients and was shown to be in membrane fractions I (20% sucrose) and IV (35% sucrose). Saturation binding studies of [3H]LTC4 on endothelial cell monolayers at 4 degrees C demonstrated high-affinity binding sites with a dissociation constant (Kd) of 6.8 +/- 2.2 nM (mean +/- SD) and a density of 0.12 +/- 0.02 pmol/10(6) cells. At 4 degrees C, the specific binding of [3H]LTC4 by each of the subcellular fractions reached equilibrium at 30 min and remained stable for an additional 60 min. After 30 min of incubation with [3H]LTC4, the addition of excess unlabeled LTC4 to each subcellular fraction reversed more than 70% of [3H]LTC4 binding in 10 min. The [3H]LTC4 binding activities of subcellular fractions were enhanced approximately twofold to fourfold in the presence of Ca2+, Mg2+, and Mn2+, whereas Na+, K+, and Li+ were without effect. As measured by saturation experiments, the Kd and density of LTC4 binding sites in fraction I were 4.8 +/- 1.6 nM and 16.5 +/- 1.9 pmol/mg of protein, respectively, and in fraction IV were 4.7 +/- 1.5 nM and 81.4 +/- 19 pmol/mg of protein, respectively. Inhibition of [3H]LTC4 binding in membrane-enriched subcellular fractions I and IV by LTC4 occurred with molar inhibition constant (Ki) values of 4.5 +/- 0.1 nM and 4.7 +/- 1.2 nM, respectively, whereas Ki values for LTD4 were 570 +/- 330 nM and 62.5 +/- 32.8 nM, respectively, and for LTE4 were greater than 1000 nM for each fraction; LTB4 and reduced glutathione were even less active. FPL55712, a putative antagonist of the sulfidopeptide LT components of slow reacting substance of anaphylaxis, had Ki values of 1520 +/- 800 nM and 1180 +/- 720 nM for [3H]LTC4 binding sites on membrane-enriched subcellular fractions I and IV, respectively. Thus as defined by Kd, Ki, and specificity, the LTC4 binding units that are distributed to the plasma membrane and the binding units in the subcellular fraction of greater density were similar to each other. Pretreatment of the isolated subcellular membrane fractions with trypsin abolished [3H]LTC4 binding by fraction I, enriched for the plasma membrane marker 5' nucleotidase, and that by fraction IV, enriched for the mitochondrial membrane marker succinate-cytochrome C reductase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Leukotriene (LT) C4-metabolizing enzyme was studied using rat leukocytes. Neutrophils and lymphocytes hardly metabolized LTC4, whereas macrophages rapidly converted LTC4 to LTD4. The LTC4-metabolizing enzyme of macrophages was present in the membrane fraction but not in the nuclear, granular and cytosol fractions. When macrophages were modified chemically with diazotized sulfanilic acid, a poorly permeant reagent which inactivates cell-surface enzymes selectively, the LTC4-metabolizing activity of macrophages decreased significantly (greater than 90%). These findings suggest that rat macrophages possess the LTC4-metabolizing enzyme which converts LTC4 to LTD4, on the cell surface membrane.  相似文献   

4.
It was reported previously that radiation-induced cytotoxicity in V79A03 (V79) cells was attenuated by pretreatment of cells with leukotriene C4 (LTC4), leading us to determine that V79 cells possessed specific binding sites, with characteristics of receptors, for LTC4 (see the preceding, companion communication). Additional studies were conducted to determine the subcellular distribution and the chemical nature of the LTC4 binding site in V79 cells. Trypsin treatment of cells before LTC4 binding assays resulted in a 74% reduction in high-affinity binding. In tests to examine the subcellular location of LTC4 binding, plasma membrane and nuclear fractions were obtained from V79 cells. In contrast to Scatchard analyses of LTC4 binding to intact cells which were curvilinear, Scatchard analyses of nuclear and plasma membrane fractions were linear, indicative of the presence in these cellular substituents of low and high-affinity binding, respectively. To examine the nature of the high-affinity LTC4 binding sites, intact V79 cells were photolyzed with [3H]-LTC4 rendered photoactive by preincubation with N-hydroxysuccinimidyl-4-azidobenzoate. The cell-bound radioactivity migrated during sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with an apparent molecular weight of approximately 40 kdal. Five different commercial preparations of glutathione-S-transferase (GST), which has been implicated as a source of LTC4 "specific binding" in other cells, migrated in the same SDS-PAGE system with an apparent molecular weight of 20-24 kdal. Furthermore, preincubations of V79 cells with three antisera generated against GST had minimal effects upon subsequent LTC4 binding to intact cells. These data, taken together with the data from the preceding companion communication, suggest that the radioprotective effect of LTC4 upon V79 cells may be attributable to a receptor-mediated phenomenon which appears distinct from leukotriene binding to GST.  相似文献   

5.
Binding of [3H]leukotriene C4 and D4 to guinea-pig lung sections was characterised and binding sites were localized by autoradiography. Both leukotrienes bound to guinea-pig lung sections and membranes with high affinity and with similar characteristics to binding in a membrane preparation. Autoradiography revealed that the distribution of LTC4 and D4 binding sites was markedly different. Smooth muscle and epithelium of central and peripheral airways were densely labelled with [3H]LTC4; vascular smooth muscle and alveolar walls were also labelled. With [3H]LTD4, however, there was no detectable labelling of airways or vessels but substantial labelling of alveolar walls. This lends further support that LTC4 and LTD4 binding sites differ and may not be identical with functional receptors.  相似文献   

6.
Binding of [3H] leukotriene C4 and D4 to guinea-pig lung sections was charaterised and binding sites were localized by autoradiography. Both leukotrienes bound to guinea-pig lung sections and membranes with high affinity and with similar charateristics to binding in a membrane preparation. Autoradiography revealed that the distribution of LTC4 and D4 binding sites was markedly different. Smooth muscle and epithelium of central and peripheral airways were densely labelled with [3H]LTC4; vascular smooth muscle and alveolar walls were also labelled. With [3H]LTD4, however, there was no detectable labelling of airways or vessels but subtantial labelling of alveolar walls. This lends futher support that LTC4 and LTD4 binding sites differ and may not be identical with functional receptors.  相似文献   

7.
Pituitary cells produce leukotrienes (LTs) and respond to exogenous administration of LTs by releasing gonadotropins. Specific high affinity leukotriene C4 (LTC4) binding has been found in membrane preparations of bovine anterior pituitaries. Unlabelled LTC4 displaced specific [3H]LTC4 binding. Other leukotrienes (LTB4, LTD4, LTE4, LTF4) did not compete with [3H]LTC4 for binding sites when administered at increasing concentrations together with a constant amount of radioligand indicating that the binding is highly specific for LTC4. Scatchard analysis of binding data obtained from saturation studies revealed a single binding site for [3H]LTC4 with a Kd of 8.95 +/- 5.53 nM and a B max of 15.44 +/- 6.93 pmol per mg of membrane protein. Glutathione S-transferase, a possible LTC4 binding site, did not display activity in the membrane fraction although the two glutathione derivates S-octylglutathione and S-decylglutathione competed with LTC4 in binding experiments. As leukotrienes are potent stimulators of gonadotropin secretion and modulators of gonadotropin-releasing hormone (GnRH)-induced gonadotropin release it is concluded that leukotrienes may be involved in the signal transduction pathway of GnRH and that they may act via a specific and high affinity receptor.  相似文献   

8.
We studied the characteristics of the leukotriene (LT) C4 and D4 receptors on a cultured smooth muscle cell line, BC3H-1. Specific [3H]LTC4 binding to the cell membrane was greater than 80% of total binding and saturable at a density of 3.96 +/- 0.39 pmol/mg protein, with an apparent dissociation constant (Kd) of 14.3 +/- 2.0 nM (n = 9). The association and dissociation of [3H]LTC4 binding were rapid and apparent equilibrium conditions were established within 5 min. Calculated Kd value of [3H]LTC4 binding from the kinetic analysis was 9.9 nM. From the competition analysis, calculated Ki value of unlabeled LTC4 to compete for the specific binding of [3H]LTC4 was 9.2 nM and was in good agreement with the Kd value obtained from the Scatchard plots or kinetic analysis. The rank order of potency of the unlabeled competitors for competing specific [3H]LTC4 binding was LTC4 much greater than LTD4 greater than LTE4 greater than FPL-55712. The maximum number of binding sites (Bmax) of [3H]LTD4 in the membrane of BC3H-1 cell line was about 11 times lower than that of the [3H]LTC4. The calculated values of Kd and Bmax of [3H]LTD4 binding were 9.3 +/- 0.8 nM and 0.37 +/- 0.04 pmol/mg protein, respectively (n = 3). The rank order of potency or the unlabeled competitors for competing specific [3H]LTD4 binding was LTD4 = LTE4 greater than FPL-55712 much greater than LTC4. These findings demonstrate that BC3H-1 cell line possess both LTC4 and LTD4 receptors with a predominance of LTC4 receptors. Thus BC3H-1 cell line is a good model to study the regulation of LTC4 and LTD4 receptors.  相似文献   

9.
Cell lysates of mouse peritoneal macrophages, in the presence of reduced glutathione, converted leukotriene LTA4 to LTC4, and neither LTD4 nor LTE4 was detected. Therefore, like cultured rat basophilic leukemia cells (RBL cells), the peritoneal macrophage contains LTC4 synthetase and appears to contain little, if any, gamma-glutamyl transpeptidase. When LTA4 was added to subcellular fractions of mouse macrophage lysate, the highest specific activity of LTC4 synthetase (nmol LTC4/mg protein per 10 min) was associated with the particulate or membrane fractions (i.e., 10(4) and 10(5) X g pellets). The 10(5) X g supernatant contains approx. 1% of the specific activity and 6% of the total LTC4 synthetase activity compared with that of the 10(5) X g pellet. Conversely, the 10(5) X g supernatant had four-times more specific activity and 19-times more total GSH S-transferase activity than did the 10(5) X g pellet when evaluated using 1-chloro-2,4-dinitrobenzene (DNCB) as the substrate. LTA4 was converted to LTC4 by the membrane enzyme LTC4 synthetase in a dose-dependent manner at low LTA4 concentrations (3-50 microM) and reached a plateau of approx. 30 microM LTA4 using the macrophage 10(5) X g pellet as an enzyme source. The apparent Km value of LTC4 synthetase for LTA4 was estimated to be 5 microM based on Lineweaver-Burk plots. Enzyme in the 10(5) X g supernatant produced negligible quantities of LTC4 (1% or less of the particulate fractions) over a wide range of LTA4 concentrations. However, an enzyme in the 10(5) X g supernatant fraction presumed to be GSH S-transferase effectively catalyzes the conjugation of glutathione (GSH) with the aromatic compound DNCB. The apparent Km value of GSH S-transferase for DNCB was estimated to be 1.0-1.5 mM. On the other hand, enzyme from the membrane fraction (i.e., 10(5) X g pellet) catalyzed this reaction at a negligible rate over a wide range of DNCB concentrations. The apparent Km value of LTC4 synthetase for GSH was estimated to be 0.36 mM and the corresponding Km value estimated for the glutathione S-transferase was 0.25-0.76 mM. These values indicate similar kinetics for GSH utilization by both enzymes. These Km values are also significantly lower than the intracellular GSH levels of 2 to 5 mM. Therefore, it is suggested that the substrate limiting LTC4 synthetase activity is LTA4 and not GSH. Our results indicate that LTC4 synthetase from mouse peritoneal macrophages is a particulate or membrane-bound enzyme, as was reported by Bach et al.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
We have synthesized the 5,6-LTA4, 8,9-LTA4, and 14,15-LTA4 as methyl esters by an improved biomimetic method with yields as high as 70-80%. We have investigated the catalytic efficiency of the purified cytosolic glutathione S-transferase (GST) isozymes from rat liver in the conversion of these leukotriene epoxides to their corresponding LTC4 methyl esters. Among various rat liver GST isozymes, the anionic isozyme, a homodimer of Yb subunit, exhibited the highest specific activity. In general, the isozymes containing the Yb subunit showed better activity than the isozymes containing the Ya and/or Yc subunits. Interestingly, all three different LTA4 methyl esters gave comparable specific activities with a given GST isozyme indicating that regiospecificity of GSTs was not the factor in determining their ability to catalyze this reaction. Surprisingly, purified GSTs from sheep lung and seminal vesicles showed little activity toward these leukotriene epoxides, indicating a lack of the counterpart of rat liver anionic GST isozyme in these tissues.  相似文献   

11.
Specific binding of leukotriene B4 to guinea pig lung membranes   总被引:2,自引:0,他引:2  
We have demonstrated binding sites for LTB4 in guinea pig lung membranes. Binding of [3H]-LTB4 was of high affinity (Kd = 0.76 nM), saturable and linear with protein concentration (0.2-1.2 mg/ml). Scatchard and Hill's plot analysis indicated a single class of binding site with a Hill's coefficient of 0.99 +/- 0.08 (n = 4). [3H]-LTB4 was unmetabolized during incubation with membrane preparations, as indicated by high performance liquid chromatography. Divalent cations such as Mg2+ and Ca2+ enhanced binding capacity without changing the Kd. Na+ ions decreased binding in a concentration-dependent manner. Guanine nucleotides, GTP, GTP gamma S and Gpp(NH)p also decreased the number of binding sites. Finally, competition experiments demonstrated the following order of potency for displacement of [3H]-LTB4 from its receptor site: LTB4 greater than 20-OH-LTB4 much greater than 20-COOH-LTB4 = 6-trans-12-epi-LTB4 greater than LTC4 = LTD4 = 5-HETE. These data indicate that a specific LTB4 receptor, in addition to the previously documented LTC4 and LTD4 receptors, exists in guinea pig lung.  相似文献   

12.
In this study, specific binding sites for [3H]-LTC4 on membrane preparations from American bullfrog (Rana catesbeiana) brain were characterized. Binding assays were done in the presence of serine (5mM) borate (10 mM) for 30 min at 23 degrees C. Under these conditions, no metabolism of LTC4 to LTD4 occurred. Specific binding of [3H]-LTC4 reached steady state within 10 min, remained constant for 60 min, and was reversible with the addition of 1,000-fold excess unlabelled LTC4. Scatchard analysis of the binding data indicated a single class of binding sites with an estimated Kd of 89.83 nM and Bmax of 43.79 pmol/mg protein. Competition binding studies demonstrated that LTD4 and LTE4 were ineffective in displacing [3H]-LTC4 from its binding site. The Ki for LTC4 was 51 nM. S-decylglutathione, glutathione and hematin had Ki values of 44, 312,602, and 25,576 nM, respectively. The mammalian cysteinyl leukotriene antagonist L-660,711 inhibited specific binding of [3H]-LTC4, with a Ki of 87,149 nM. Guanosine-5'-0-3-thiotriphosphate (GTP gamma S) did not affect specific binding of [3H]-LTC4 indicating that, like mammalian LTC4 receptors, a Gi protein is not involved in the transduction mechanism. The LTC4 binding site in bullfrog brain demonstrates both similarities and differences from its mammalian counterpart.  相似文献   

13.
Using rat heart sarcolemma and liver plasma membrane vesicles, it has been verified that the transport of leukotriene C4 (LTC4) across membranes is an ATP-dependent process; the apparent Km for LTC4 was 150 nM (heart sarcolemma) or 250 nM (liver plasma membrane). S-(2,4-dinitrophenyl)-glutathione (DNP-SG) inhibited LTC4 uptake into the vesicles dose-dependently (I50 = 25 microM for both heart sarcolemma and liver plasma membrane vesicles). Mutual inhibition between LTC4 and DNP-SG in uptake into the vesicles demonstrates that transport of LTC4 is mediated by an ATP-dependent glutathione S-conjugate carrier.  相似文献   

14.
Specific leukotriene C4 (LTC4)1 binding sites were identified in membrane preparations from human fetal lung. Specific binding of [3H]-LTC4 represented 95 percent of total binding, reached steady-state within 10 minutes and was rapidly reversible upon addition of excess unlabeled LTC4. Binding assays were performed at 4 degrees C under conditions which prevented metabolism of [3H]-LTC4 (80 mM serine-borate, 10 mM cysteine, 10 mM glycine). Under these conditions, greater than 95 percent of the membrane bound radioactivity, as analyzed by high performance liquid chromatography, co-eluted with the LTC4 standard. Computer-assisted analyses of saturation binding data showed a single class of binding sites with a dissociation constant (Kd) of 26 + 6 nM and a density (Bmax) of 84 + 18 pmol/mg protein. Pharmacological specificity was demonstrated by competition studies in which specific binding of [3H]-LTC4 was displaced by LTC4 and its structural analogs with inhibition constants (Ki) of 10 to 30 nM, whereas LTD4, diastereoisomers of LTD1, LTE4 and the end organ antagonist FPL 55712 were 150 to 700 fold less potent competitors than LTC4. These results provide evidence for specific, reversible, saturable, high affinity binding sites for [3H]-LTC4 in human fetal lung membranes.  相似文献   

15.
Leukotriene (LT) A4 metabolism was studied in human platelets and endothelial cells, since both cells could be involved in transcellular formation of LTC4. Upon addition of exogenous LTA4, both cells produced LTC4 as a major metabolite at various incubation times, and no LTB4, LTD4, or LTE4 was detected. Kinetic studies revealed a higher apparent Km for LTA4 in endothelial cells as compared to platelets (5.8 microM for human umbilical vein endothelial cells (HUVEC) versus 1.3 microM for platelets); platelets were more efficient in this reaction with a higher Vmax (174 pmol/mg protein/min) versus 15 pmol/mg protein/min in HUVEC. The formation of LTC4 and corresponding kinetic parameters were not modified when platelets or endothelial cells were stimulated by thrombin prior to or simultaneously with the addition of LTA4. In both cells LTC4 synthase activity was not modified by repeated addition of LTA4 showing that it is not a suicide-inactivated enzyme. Furthermore, in platelets and endothelial cells, the enzyme activity was localized in the membrane fraction and was distinct from cytosolic glutathione-S-transferases. Platelet membrane fractions showed apparent Km values of 31 microM and 1.2 mM for LTA4 and GSH, respectively. Inhibition of LTC4 formation from platelets and endothelial cells preparations by S-substituted glutathione derivatives was correlated to the length of the S-alkyl chain. The same substances inhibited cytosolic glutathione-S-transferases with significantly lower IC50, confirming the distinct nature of the two enzymes. These results show that platelets and HUVEC possess similar enzymes for the production of LTC4 from LTA4; however, platelets seem to have a higher efficiency than HUVEC in performing this reaction.  相似文献   

16.
The distribution of alpha 1-adrenergic receptors in rat liver subcellular fractions was studied using the alpha 1-adrenergic receptor ligand [3H]prazosin. The highest number of [3H]prazosin binding sites was found in a plasma membrane fraction followed by 2 Golgi and a residual microsomal fraction, the numbers of binding sites were 1145, 845, 629 and 223 fmol/mg protein, respectively. When the binding in these fractions was compared with the activity of plasma membrane 'marker' enzymes in the same fractions a relative enrichment of [3H]prazosin binding sites was found in the residual microsomes and one of the Golgi fractions. Photoaffinity labelling with 125I-arylazidoprazosin in combination with SDS-polyacrylamide gel electrophoresis revealed the specific binding to 40 and 23 kDa entities in a Golgi fraction, while in plasma membranes the binders had an apparent molecular mass of 36 and 23 kDa. When [3H]prazosin was injected in vivo into rat portal blood followed by subcellular fractionation of liver, a pattern of an initial rapid decline and thereafter a slow decline of radioactivity was noted in all fractions. Additionally, in the two Golgi fractions a transient accumulation of radioactivity occurred between 5 and 10 min after the injection. The ED50 values for displacement of [3H]prazosin with adrenaline was lowest in the plasma membrane fraction, followed by the residual microsomes and Golgi fractions, the values were 10(-6), 10(-5) and 10(-4) mol/l, respectively. On the basis of lack of correlation between distribution of alpha 1-adrenergic antagonist binding and adenylate cyclase activity, differences in the molecular mass of alpha 1-adrenergic antagonist binders, differences in the kinetics of in vivo binding and accumulation of [3H]prazosin and also differences in agonist affinity between plasma membrane and Golgi fractions, it is concluded that alpha 1-adrenergic receptors are localized to low-density intracellular membranes involved in receptor biosynthesis and endocytosis.  相似文献   

17.
Vasopressin V1 receptors were solubilized from rat liver plasma membranes with the detergent lysophosphatidylcholine. [[3H]Arginine]vasopressin (AVP) binding to the solubilized preparations was specific and saturable, with a dissociation constant of 0.6 nM. Cross-linking of [125I]vasopressin to the solubilized fraction, studied by SDS/polyacrylamide-gel-electrophoretic analysis, demonstrated the presence of a 65 kDa band which was specifically labelled with [125I]vasopressin. Specific binding of [3H]AVP to these solubilized receptors was decreased by guanine nucleotides, but not by adenosine 5'-[beta gamma-imido]triphosphate. Addition of vasopressin increased specific binding of 35S-labelled guanosine 5'-[gamma-thio]triphosphate (GTP[35S]) to the solubilized fractions, indicating co-solubilization of GTP-binding protein(s) [G-protein(s)] and vasopressin receptors. The solubilized fraction was insensitive to both cholera- and pertussistoxin treatment. Immunoblotting of the solubilized fraction with antibodies specific for a phosphoinositide-specific phospholipase C (PI-PLC I) demonstrated the presence of a 60 kDa protein. Anti-PI-PLC I antiserum immunoprecipitated solubilized vasopressin-binding sites from rat liver (V1), but not solubilized vasopressin-binding sites from hog kidney (V2). Similar results were obtained with an anti-PI-PLC I IgG affinity column. The solubilized (V1) receptors were enriched by ion-exchange and high-performance gel-filtration liquid chromatography. Vasopressin-binding activity was co-eluted with PI-PLC I and GTP[S]-binding activity on a DEAE-Sepharose column. The major vasopressin- and GTP[35S]-binding activities were co-eluted with PI-PLC I activity at approx. 240 kDa suggesting that vasopressin receptors from rat liver membranes can be solubilized as a complex of receptor-coupler-effector by using the detergent lysophosphatidycholine.  相似文献   

18.
Recent results from our laboratory and others have suggested a possible physiological functional role(s) for leukotrienes in gastric mucosa. In the present study 3H-LTC4 binds to washed rabbit gastric mucosal membranes at 4 degrees C with a Kd of 5 nM and a Bmax of 31.3 pmol/mg protein. Leukotrienes D4, E4, B4, oxidized glutathione (GSSG), cysteine, and mercaptoethanol were unable to displace 3H-LTC4 at 1 microM concentrations, while GSH inhibited binding with a Ki of 47 nM. Differential centrifugation of the membrane preparation to remove mitochondria resulted in Ki values for LTC4 and GSH of 14 and 23 nM, respectively. The similar binding affinities and competitive receptor binding kinetics for GSH and LTC4, the low affinity for other leukotrienes, and a Ki of 7 microM for hematin, a substrate for glutathione S-transferase, suggest that 3H-LTC4 binds to a GSH site which does not discriminate between LTC4 and GSH. Membranes fractionated to remove mitochondria were assayed for glutathione peroxidase, gamma-glutamyltranspeptidase, and glutathione S-transferase as possible binding sites for LTC4. We were unable to detect enzyme activity for any of the three enzymes. The binding of LTC4 in gastric mucosa differs from other tissues with respect to the high affinity for GSH, and thus becomes an appropriate tissue in which to investigate the relationships between LTC4 and GSH.  相似文献   

19.
A radioligand binding assay has been established to study leukotriene specific binding sites in the guinea pig and rabbit tissues. Using high specific activity [3H]-leukotriene D4 [( 3H]-LTD4), in the presence or absence of unlabeled LTD4, the diastereoisomer of LTD4 (5R,6S-LTD4), leukotriene E4 (LTE4) and the end-organ antagonist, FPL 55712, we have identified specific binding sites for [3H]-LTD4 in the crude membrane fraction isolated from guinea pig lung. The time required for [3H]-LTD4 binding to reach equilibrium was approximately 20 to 25 min at 37 degrees C in the presence of 10 mM Tris-HCl buffer (pH 7.5) containing 150 mM NaCl. The binding of [3H]-LTD4 to the specific sites was saturable, reversible and stereospecific. The maximal number of binding sites (Bmax), derived from Scatchard analysis, was approximately 320 +/- 200 fmol per mg of crude membrane protein. The dissociation constants, derived from kinetic and saturation analyses, were 9.7 nM and 5 +/- 4 nM, respectively. The specific binding sites could not be detected in the crude membrane fraction prepared from guinea pig ileum, brain and liver, or rabbit lung, trachea, ileum and uterus. In radioligand competition experiments, LTD4, FPL 55712 and 5R,6S-LTD4 competed with [3H]-LTD4. The metabolic inhibitors of arachidonic acid and SKF 88046, an antagonist of the indirectly-mediated actions of LTD4, did not significantly compete with [3H]-LTD4 at the specific binding sites. These correlations indicated that these specific binding sites may be the putative leukotriene receptors in the guinea-pig lung.  相似文献   

20.
Arachidonate metabolites are potent biological mediators affecting multiple cellular functions. Although prostaglandins of the E series, which are products of the cyclooxygenase pathway, have been known as inhibitors or down-regulators of fibroblast proliferation and collagen synthesis, the more recently discovered products of the 5-lipoxygenase pathway have not been as extensively investigated with regard to fibroblast function. In this study, a sulfidopeptide product of the lipoxygenase pathway, leukotriene C4 (LTC4), was examined for its ability to modulate rat lung fibroblast collagen synthesis and proliferation in vitro. The data revealed the ability of LTC4 and to a lesser extent leukotriene D4 (LTD4) to stimulate collagen synthesis in a dose-dependent (10(-11)-10(-8) M) manner without affecting cellular proliferation as determined by radiolabeled thymidine incorporation; 1 nM LTC4 caused an 85% (p less than 0.02) increase above untreated controls in [3H]proline incorporation into collagenous protein in the media, which was blocked by the putative leukotriene receptor antagonist FPL55712 (10 microM) and inhibited by cycloheximide and actinomycin D. This LTC4 stimulatory effect was slightly more specific for collagen synthesis vs noncollagenous protein synthesis but was not accompanied with any change in the collagen type composition. Binding of [3H]LTC4 to these cells was specific, reversible, and saturable, with a Kd of 1.8 +/- 0.95 nM. Under equilibrium conditions, there was an estimated 2.39 X 10(4) receptors per cell. This binding was also inhibited by 10 microM FPL55712. Competitive binding studies show specificity of this binding for LTC4 relative to LTD4 and FPL55712. Furthermore, no significant conversion of LTC4 to LTD4 or leukotriene E4 was noted during the binding studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号