首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The appearance of collagen around individual fast twitch (FT) and slow twitch (ST) muscle fibres was investigated in skeletal muscles with different contractile properties using endurance trained and untrained rats as experimental animals. The collagenous connective tissue was analyzed by measuring hydroxyproline biochemically and by staining collagenous material histochemically in M. soleus (MS), M. rectus femoris (MRF), and M. gastrocnemius (MG). The concentration of hydroxyproline in the ST fibres dissected from MS (2.72 +/- 0.35 micrograms X mg-1 d.w.) was significantly higher than that of the FT fibres dissected from MRF (1.52 +/- 0.33 micrograms X mg-1 d.w.). Similarly, the concentration of hydroxyproline was higher in ST (2.54 +/- 0.51 micrograms X mg-1 d.w.) than in FT fibres (1.60 +/- 0.43 micrograms X mg-1 d.w.), when the fibres were dissected from the same muscle, MG. Histochemical staining of collagenous material agreed with the biochemical evidence that MS and the slow twitch area of MG are more collagenous than MRF and the fast twitch area of MG both at the level of perimysium and endomysium. The variables were not affected by endurance training. When discussing the role of collagen in the function of skeletal muscle it is suggested that the different functional demands of different skeletal muscles are also reflected in the structure of intramuscular connective tissue, even at the level of endomysial collagen. It is supposed that the known differences in the elastic properties of fast tetanic muscle compared to slow tonic muscle as, e.g., the higher compliance of fast muscle could at least partly be explained in terms of the amount, type, and structure of intramuscular collagen.  相似文献   

2.
Application of a supramaximal electrical twitch to the voluntarily contracted muscle is used to assess the level of muscle activation. Large variability in the interpolated twitch torque (ITT) has been observed when repeated stimulations are performed. It is hypothesized that this variability in ITT is caused by the stochastic nature of the timing of twitch application relative to pulses of voluntary excitation trains. Two experiments were performed on 12 subjects each to test this hypothesis. For the first experiment, a single twitch was superimposed on a train stimulation at different time intervals relative to the train pulses. For the second experiment, single, double, triple, or quadruple twitches were applied on a voluntarily contracted muscle. The ITT critically depended on the time point of twitch application: a single pulse applied 5 ms before a train pulse consistently evoked higher ITTs than all other stimulation conditions. Furthermore, variability of the ITT decreased as the number of applied twitches increased. The results support the hypothesis that a large part of the variability in the ITT may be caused by the timing of the superimposed twitch relative to the motor unit trains. The variability may be reduced by increasing the number of superimposed twitches.  相似文献   

3.
4.
5.
Ca influx and efflux in single twitch muscle fibers were determined by the movement of 45Ca. The isotope was assayed by counting the center 1 cm of a fiber while it was in nonradioactive Rnger's solution. The average resting influx in 1.0 mM Ca Ringer's was 0.26 pM Ca/cm2. sec for 5 to 20 min influx periods. The average additional influx upon stimulation in 1.0 mM Ca was 0.73 pM Ca/cm2. twitch. The efflux after both resting and stimulated 45Ca influx can be described by a single exponential curve with an average time constant of 125 min. This relationship is an indication of Ca exchange with a single intracellular compartment. This compartment contains an estimated 47% of the total muscle Ca at 1.0 mM Ca. When the Ca in the Ringer was reduced to 0.5 mM Ca, both the resting and stimulated Ca fluxes decreased. When Ca was raised to 1.8 mM, the stimulated influxes increased but the resting influx did not.  相似文献   

6.
Bacteria inhabit a wide variety of environments in which fluid flow is present, including healthcare and food processing settings and the vasculature of animals and plants. The motility of bacteria on surfaces in the presence of flow has not been well characterized. Here we focus on Pseudomonas aeruginosa, an opportunistic human pathogen that thrives in flow conditions such as in catheters and respiratory tracts. We investigate the effects of flow on P. aeruginosa cells and describe a mechanism in which surface shear stress orients surface-attached P. aeruginosa cells along the flow direction, causing cells to migrate against the flow direction while pivoting in a zig-zag motion. This upstream movement is due to the retraction of type IV pili by the ATPase motors PilT and PilU and results from the effects of flow on the polar localization of type IV pili. This directed upstream motility could be beneficial in environments where flow is present, allowing bacteria to colonize environments that cannot be reached by other surface-attached bacteria.  相似文献   

7.
The length dependence of force development of mammalian skeletal muscles was evaluated during twitch, double-pulse, and tetanic contractions, and the relation between muscle length and the time-dependent characteristics of twitch and double-pulse contractions were determined. In situ isometric contractions of the rat gastrocnemius muscle were analyzed at seven different lengths, based on a reference length at which the maximal response to double-pulse contractions occurred (Lopt-2P). Twitch and double-pulse contractions were analyzed for developed tension (DT), contraction time (tC), average rate of force development (DT-tC(-1)), half-relaxation time (t50%R), peak rate of relaxation (DT x dtmin(-1)), and 90%-relaxation time (t90%R). Considering the length at which maximal tetanic DT occurred to be the optimal length (Lo-TET), the peak DT for twitch contractions and double-pulse contractions was observed at Lo-TET + 0.75 mm (p < 0.05) and Lo-TET + 0.1 mm (p > 0.05), respectively. When measured at the length for which maximal twitch and double-pulse contractions were obtained, tetanic DT was 95.2 +/- 3 and 99.0 +/- 2% of the maximal value, respectively. These observations suggest that double-pulse contractions are more suitable for setting length for experimental studies than twitch contractions. Twitch and double-pulse contraction tC were 15.53 +/- 1.14 and 25.0 +/- 0.6 ms, respectively, at Lopt-2P, and increased above Lopt-2P and decreased below Lopt-2P. Twitch t50%R was 12.18 +/- 0.90 ms at Lopt-2P, and increased above Lopt-2P and below Lopt-2P. Corresponding changes for double-pulse contractions were greater. Stretching the muscle leads to slower twitch contractions and double-pulse contractions, but the mechanisms of this change in time course remain unclear.  相似文献   

8.
9.
10.
Understanding the dynamics of a cardiac muscle twitch contraction is complex because it requires a detailed understanding of the kinetic processes of the Ca2+ transient, thin-filament activation, and the myosin–actin cross-bridge chemomechanical cycle. Each of these steps has been well defined individually, but understanding how all three of the processes operate in combination is a far more complex problem. Computational modeling has the potential to provide detailed insight into each of these processes, how the dynamics of each process affect the complexity of contractile behavior, and how perturbations such as mutations in sarcomere proteins affect the complex interactions of all of these processes. The mechanisms involved in relaxation of tension during a cardiac twitch have been particularly difficult to discern due to nonhomogeneous sarcomere lengthening during relaxation. Here we use the multiscale MUSICO platform to model rat trabecular twitches. Validation of computational models is dependent on being able to simulate different experimental datasets, but there has been a paucity of data that can provide all of the required parameters in a single experiment, such as simultaneous measurements of force, intracellular Ca2+ transients, and sarcomere length dynamics. In this study, we used data from different studies collected under similar experimental conditions to provide information for all the required parameters. Our simulations established that twitches either in an isometric sarcomere or in fixed-length, multiple-sarcomere trabeculae replicate the experimental observations if models incorporate a length–tension relationship for the nonlinear series elasticity of muscle preparations and a scheme for thick-filament regulation. The thick-filament regulation assumes an off state in which myosin heads are parked onto the thick-filament backbone and are unable to interact with actin, a state analogous to the super-relaxed state. Including these two mechanisms provided simulations that accurately predict twitch contractions over a range of different conditions.  相似文献   

11.
A number of methodological issues in the use of the interpolated twitch technique were investigated for their effect on true maximum force (TMF) and activation (ACT): timing of control (pre- vs post-contraction) and superimposed twitches (first vs second); type of twitch stimulus (primarily magnitude); and the type of extrapolation utilised. On three occasions subjects performed a series of maximal and sub-maximal contractions of the knee extensors, with electrically evoked twitches delivered before, during and after each contraction. The twitch-voluntary force relationship was concave for all types of twitch stimuli, and extrapolation using this relationship typically calculated TMF 39N (7%) higher, and ACT 7% lower than linear extrapolation. The timing of the control (2-4%) and superimposed twitches (approximately 4%) both influenced TMF and ACT. Despite the different twitch stimuli being a range of magnitudes (13-32% maximum voluntary force) they did not affect TMF and ACT. A novel finding was that prior potentiation changed the shape of the twitch-voluntary force relationship. For precise measurement of TMF and ACT it is recommended that: extrapolation is based on the twitch-voluntary force relationship of the experimental model; and post-contraction potentiated twitches be used, as the superimposed twitch on a high level contraction appears to be potentiated.  相似文献   

12.
13.
14.
Muscle inactivation: assessment of interpolated twitch technique   总被引:6,自引:0,他引:6  
Behm, D. G., D. M. M. St-Pierre, and D. Perez. Muscleinactivation: assessment of interpolated twitch technique.J. Appl. Physiol. 81(5):2267-2273, 1996.The validity, reliability, and protocol for theinterpolated twitch technique (ITT) were investigated with isometricplantar flexor and leg extension contractions. Estimates of muscleinactivation were attempted by comparing a variety of superimposed withpotentiated evoked torques with submaximal and maximal voluntarycontraction (MVC) torques or forces. The use of nerve and surfacestimulation to elicit ITT was reliable, except for problems inmaintaining maximal stimulation with nerve stimulation at 20°plantar flexion and during leg extension. The interpolated twitchratio-force relationship was best described by a shallow hyperboliccurve resulting in insignificant MVC prediction errors withsecond-order polynomials (1.1-6.9%). The prediction error under40% MVC was approximately double that over 60% MVC, contributing topoor estimations of MVC in non-weight-bearing postimmobilized anklefracture patients. There was no significant difference in the ITTsensitivity when twitches, doublets, or quintuplets were used.The ITT was valid and reliable when high-intensity contractions wereanalyzed with a second-order polynomial.

  相似文献   

15.
This study investigated the feasibility of measuring voluntary activation of the trapezius muscle with twitch interpolation. Subjects (n = 8) lifted the right shoulder or both shoulders against fixed force transducers. Stimulation of the accessory nerve in the neck was used to evoke maximal twitches in right trapezius. The twitch-like increments in force (superimposed twitches) evoked during different strength voluntary contractions were linearly related to voluntary force (r = ?0.82 to ?0.99). Hence, voluntary activation could be quantified by twitch interpolation with this stimulus. Comparison of unilateral and bilateral MVCs showed that maximal voluntary force was greater in unilateral than bilateral efforts (92.7 ± 2.9% and 82.3 ± 5.8% MVC, respectively) but voluntary activation was similar (88.6 ± 9.6% and 91.7 ± 5.2%). Trapezius is commonly affected in work-related musculoskeletal disorders. Measurement of voluntary activation will be a useful technique to demonstrate whether the reduced maximal voluntary force reported in such disorders is due to muscular or neural factors.  相似文献   

16.
The distribution of glycogen, lipids and succinic dehydrogenase (SDH) in twitch and tonus fibers of several amphibians and birds is described, and the correlation of histochemical properties with fiber structure and function is discussed. Twitch and tonus fibers were identified histologically by the presence of Fibrillenstruktur and Felderstruktur respectively. The rectus abdominis, sartorius and semitendinosus were studied in Rana pipiens, Xenopus laevis and Necturus maculosus; the pectoralis major, pectoralis minor, anterior latissimus dorsi and posterior latissimus dorsi were investigated in Gallus gallus and Passer domesticus. Periodic acid-Schiff was used to stain for glycogen, Sudan Black B for lipids and Nitro BT for localization of SDH activity. In amphibian muscles, fibers with Fibrillenstruktur and Felderstruktur constitute the rectus abdominis. Except in one case, only Fibrillenstruktur fibers were seen in the sartorius and semitendinosus. In the avian muscles, fibers with Fibrillenstruktur comprise the pectoralis major, pectoralis minor and posterior latissimus dorsi, while fibers with Felderstruktur constitute the anterior latissimus dorsi. These types of muscle fibers showed no consistent pattern in the distribution of glycogen, lipids and SDH. The evidence precludes the use of such data alone for distinguishing twitch (Fibrillenstruktur) and tonus (Felderstruktur) fibers.  相似文献   

17.
The twitch-potentiating effects of opioids in the frog's skeletal muscle which are naloxone resistant and nonstereospecific were further studied. The rapid kinetics of the onset and of the offset (following washout) of the opioid effect indicates that the site for this action is the surface membrane of the muscle fibre. On the other hand, the lack of any twitch-potentiating effect by naloxone methylbromide, a quaternary derivative of naloxone, suggests that opioids which potentiate the twitch must enter the lipid phase of the membrane to act. Intracellular microelectrode experiments revealed no relation between the opioid effects on membrane electrical events and twitch potentiation. Blocking slow calcium channels with D-600 did not modify the opioid-induced twitch potentiation. The twitch potentiation was antagonized by increasing the extracellular calcium concentration, [Ca2+]o, to 8.64 mM. The effects of closely spaced multiple electrical pulses revealed that the opioids decreased the summated response relative to predrug controls. The results suggest that opioids facilitate the process of excitation-contraction coupling in the frog's skeletal muscle by the release of an additional amount of "trigger calcium" following a single electrical stimulus, thereby generating a potentiated twitch.  相似文献   

18.

Background  

It has been reported that potentiation of a skeletal muscle twitch response is proportional to muscle length with a negative slope during staircase, and a positive slope during posttetanic potentiation. This study was done to directly compare staircase and posttetanic responses with measurement of sarcomere length to compare their length-dependence.  相似文献   

19.
Charge movement in a fast twitch skeletal muscle from rat   总被引:3,自引:0,他引:3       下载免费PDF全文
Voltage-dependent charge movement in the rat omohyoid muscle was investigated using the three microelectrode voltage clamp technique. The charge that moved during a depolarization from the holding potential (-90 mV) to the test potential, V, increased with increasing V, saturating around 0 mV. The charge vs. voltage relationship was well fitted by Q = Qmax/{1 + exp[-(V - V)/k]}, with Qmax = 28.5 nC/μF, V = -34.2 mV, and k = 8.7 mV. Repolarization of the fiber from the test potential back to the holding potential caused an equal but opposite amount of charge to move. The kinetics of ON charge movement could be well described by a model developed for frog muscle by Horowicz and Schneider (1981b), which suggests that rat and frog charge movements are similar. This model failed to describe the kinetics of OFF charge movement for steps in potential from 0 mV to test potentials of -10 to -90 mV. OFF-charge movement rose to a peak more slowly and decayed more slowly than predicted by the theory.  相似文献   

20.
We analyzed the existence of lipid bodies (LBs) in the fast twitch rat flexor digitorum brevis (FDB) myofibers and found that these structures were scarce. However, isolation procedure of the myofibers, heath shock, viral infection or the glycosylation inhibitor tunicamycin induced formation of the LBs, which were stationary structures flanking Z lines. We next infected FDB myofibers with recombinant Semliki Forest virus expressing caveolin 3-yellow fluorescent protein (cav3-YFP) since this chimeric protein was targeted to the LBs facilitating their further analysis. Photobleaching experiments showed that the LBs recovered cav 3-YFP extremely slowly, indicating that they were not continuous with the endoplasmic/sarcoplasmic reticulum. We found, however, that cav3-YFP could move from the LBs to the sarcolemma and this phenomenon was sensitive to Brefeldin A, suggesting that the chimeric protein could be returned from the LBs to the endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号