首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(±)-(2Z,4E)-5-(1′,2′-epoxy-2′,6′,6′-trimethylcyclohexyl)-3-methyl-2,4-pentadienoic acid was metabolized by Cercospora cruenta, which has the ability to produce (+)-abscisic acid (ABA), to give (±)-(2Z,4E)-xanthoxin acid, (±)-(2Z,4E)-5′-hydroxy-1′,2′-epoxy-1′,2′-dihydro-β-ionylideneacetic acid, (±)-1′,2′-epoxy-1′,2′-dihydro-β-ionone and trace amounts of ABA.  相似文献   

2.
We isolated five bergenin phenylpropanoates, i.e., 11-O-(E)-sinapate (1), 11-O-(E)-ferulate (2), 11-O-(Z)-ferulate (3), 11-O-(E)-coumalate (4), and 11-O-(Z)-coumalate (5), and three bergenin hydroxybenzoates, i.e., 11-O-syringate (6), 11-O-vanillate (7), and 11-O-p-hydroxybenzoate (8), along with bergenin (9), from the leaves of Vatica bantamensis. Moreover, we identified the geometrical isomerization between 2 and 3. These structures were characterized by nuclear magnetic resonance (NMR). This is the first report that shows the occurrence of bergenin phenolic acid esters in dipterocarpaceaeous plants.  相似文献   

3.
Cyclization of trans,trans-[1-3H2,12,13-14C]farnesyl pyrophosphate (2a) by a preparation of trichodiene synthetase isolated from the fungus, Trichothecium roseum, gave trichodiene (5a), which was shown by chemical degradation to retain both tritium atoms of the precursor at C-11. Incubation of 1S-[1-3H,12,13-14C]farnesyl pyrophosphate (2b) and 1R-[1-3H,12,13-14C]farnesyl pyrophosphate (2c) with trichodiene synthetase and degradation of the resulting labeled trichodienes, 5b and 5c, established that the displacement of the pyrophosphate moiety from C-1 of the precursor and formation of the new C-C bond in the formation of trichodiene takes place with net retention of configuration. These results are accounted for by an isomerization-cyclization mechanism involving the intermediacy of nerolidyl pyrophosphate (4).  相似文献   

4.
Sterically hindered cis-carotenoids 1 and 2 were isolated from seeds of the oriental bitter sweet, Celastrus orbiculatus. Their structures were determined to be (3′Z, 5′Z)-celaxanthin and (3′Z, 5′Z)-torulene, respectively, on the basis of spectroscopic data and iodine-catalyzed stereomutation. This is the first report on carotenoids with a 3Z, 5Z configuration.  相似文献   

5.
Phytochemical study on the fresh flower of Musa nana Lour. provided seventeen known compounds including two alkaloids, 3-(hydroxyacetyl)-indole (1), bi-indol-3-yl (2), two terpenoids, 5-[(1R)-1-hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexen-1-yl]-3-methyl-, (2Z, 4E) −2, 4-pentadienoic acid (Valdes), 5, 6(S), 7, 7a(R)-tetrahydro-6-hydroxy-4,4-dimethyl-2(4H)-benzofuranone (4), seven phenols (511), three phenylphenalenones, 2-hydroxy-4-(4-methoxyphenyl)-1H-phenalen-1-one (12), 2-methoxy-9-phenyl-1H-phenalen-1-one (13), 2-methoxy-9-(4-methoxyphenyl)-1H-phenalen-1-one (14), and three lipids (1517). In the present study, all the compounds were isolated for the first time from the species M. nana. Ten compounds including 1-8 and 15-16 have never been previously encountered in the Musaceae family. Furthermore, the chemotaxonomic significance of these isolates was also discussed.  相似文献   

6.
Comparative substrate specificities of farnesyl pyrophosphate synthetases I and II purified from larvae of silkworm, Bombyx mori, were studied by use of the possible biosynthetic intermediates of juvenile hormones in the insect. In the presence of Mn2+ ions farnesyl pyrophosphate synthetase II showed higher activity than synthetase I and the corresponding enzyme from pig liver with the following substrate homologues: (Z)-3-methyl-2-pentenyl-, 3-ethyl-3-butenyl-, (2E,6Z)-3,7-dimethyl-2,6-nonadienyl-, and (2E,6Z)-3-ethyl-7-methyl-2,6-nonadienyl pyrophosphate. When (Z)-3-methyl-2-pentenyl-, 3-ethyl-3-butenyl-, and isopentenyl pyrophosphate were mixed and incubated with farnesyl pyrophosphate synthetase II, (2E,6E,10Z)-3,11-dimethyl-7-ethyl-2,6,10-tridecatrienyl-, (2E,6E,10Z)-3,7,11-trimethyl-2,6,10-tridecatrienyl, and a trace amount of (2E,6E,10Z)-3,7-diethyl-11-methyl-2,6,10-tridecatrienyl pyrophosphate, whose carbon skeletons were the same as those of juvenile hormone I, II, and O, respectively, were formed. (Z)-3-Methyl-2-pentenyl pyrophosphate was produced from 3-ethyl-3-butenyl pyrophosphate as a single product by the action of silkworm isopentenyl pyrophosphate isomerase, though the enzyme activity was much lower with this substrate than with the usual substrate, isopentenyl pyrophosphate.  相似文献   

7.
Phytochemical investigation on the leaves of Labisia pumila (Myrsinaceae), an important medicinal herb in Malaysia, has led to the isolation of 1-O-methyl-6-acetoxy-5-(pentadec-10Z-enyl)resorcinol (1), labisiaquinone A (2) and labisiaquinone B (3). Along with these, 16 known compounds including 1-O-methyl-6-acetoxy-5-pentadecylresorcinol (4), 5-(pentadec-10Z-enyl)resorcinol (5), 5-(pentadecyl)resorcinol (6), (−)-loliolide (7), stigmasterol (8), 4-hydroxyphenylethylamine (9), 3,4,5-trihydroxybenzoic acid (10), 3,4-dihydroxybenzoic acid (11), (+)-catechin (12), (−)-epicatechin (13), kaempferol-3-O-α-rhamnopyranosyl-7-O-β-glycopyranoside (14), kaempferol-4′-O-β-glycopyranoside (15), quercetin-3-O-α-rhamnopyranoside (16), kaempferol-3-O-α-rhamnopyranoside (17), (9Z,12Z)-octadeca-9,12-dienoic acid (18) and stigmasterol-3-O-β-glycopyranoside (19) were also isolated. The structures of these compounds were established on the basis of 1D and 2D NMR spectroscopy techniques (1H, 13C, COSY, HSQC, NOESY and HMBC experiments), mass spectrometry and chemical derivatization. Among the constituents tested 1 and 4 exhibited strongest cytotoxic activity against the PC3, HCT116 and MCF-7 cell lines (IC50 values ⩽10 μM), and they showed selectivity towards the first two-cell lines relative to the last one.  相似文献   

8.
A new coumarin, (?)-cis-(3′R,4′R)-4′-O-angeloylkhellactone-3′-O-β-d-glucopyranoside (1) and two new chalcones, 3′-[(2E)-5-carboxy-3-methyl-2-pentenyl]-4,2′,4′-trihydroxychalcone (4) and (±)-4,2′,4′-trihydroxy-3′-{2-hydroxy-2-[tetrahydro-2-methyl-5-(1-methylethenyl)-2-furanyl]ethyl}chalcone (5) were isolated from the aerial parts of Angelica keiskei (Umbelliferae), together with six known compounds: (R)-O-isobutyroyllomatin (2), 3′-O-methylvaginol (3), (?)-jejuchalcone F (6), isoliquiritigenin (7), davidigenin (8), and (±)-liquiritigenin (9). The structures of the new compounds were determined by interpretation of their spectroscopic data including 1D and 2D NMR data. All known compounds (2, 3, and 69) were isolated as constituents of A. keiskei for the first time. To identify novel hepatocyte proliferation inducer for liver regeneration, 19 were evaluated for their cell proliferative effects using a Hep3B human hepatoma cell line. All isolates exhibited cell proliferative effects compared to untreated control (DMSO). Cytoprotective effects against oxidative stress induced by glucose oxidase were also examined on Hep3B cells and mouse fibroblast NIH3T3 cells and all compounds showed significant dose-dependent protection against oxidative stress.  相似文献   

9.
Abscisic acid and its novel metabolise, which was a conjugated form of hydroxyabscisic acid (Metabolite C), were isolated from seeds of Robinia pseudacacia L. The structure of the conjugate was shown to be (+)-3-methyl-5 - [1(S),6(R) - 2,6 - dimethyl - 1 - hydroxy - 6 - (3 - hydroxy - 3 - methyl - 4 - carboxybutanoyloxymethyl) - 4 - oxo-cyclohex-2-enyl]-2-Z-4-E-pentadienoic acid and tentatively named β-hydroxy-β-methylglutarylhydroxyabscisic acid.  相似文献   

10.
《Carbohydrate research》1986,148(2):235-247
The photo-oxygenation of ethyl 2-methyl-5-(1,2,3,4-tetra-O-acetyl-d-lyxo-tetritol-1-yl)-3-furoate, ethyl 2-methyl-5-(1,2,3,4-tetra-O-acetyl-d-arabino-tetritol-1-yl)-3-furoate, 3-acetyl-2-methyl-5-(1,2,3,4-tetra-O-acetyl-d-arabino-tetritol-1-yl)furan, and ethyl 5-(1,4-di-O-acetyl-2,3-O-isopropylidene-d-lyxo-tetritol-1-yl)-2-methyl-3-furoate yielded the corresponding 1,4-endo-peroxides (3a–3d as pairs of diastereomers). Each diastereomer of the pairs 3a and 3d was isolated by fractional crystallisation. The rearrangement of the endo-peroxides at room temperature, by dissolution in CDCl3, yielded the corresponding diepoxides and monoepoxides. The reduction of 3a–3d with methyl sulphide yielded the corresponding γ-diketones, ethyl (E)-2-C-acetyl-5,6,7,8-tetra-O-acetyl-2,3-dideoxy-d-lyxo-oct-2-en-4-ulosonate, ethyl (E)-2-C-acetyl-5,6,7,8-tetra-O-acetyl-2,3-dideoxy-d-arabino-oct-2-en-4-ulosonate, 3-C-acetyl-6,7,8,9-tetra-O-acetyl-1,3,4-trideoxy-d-arabino-non-3-eno-2,5-diulose, and ethyl (E)-2-C-acetyl-5,8-di-O-acetyl-2,3-dideoxy-6,7-O-isopropylidene-d-lyxo-oct-2-en-4-ulosonate, which can isomerise into the corresponding Z isomers.  相似文献   

11.
From the extract of the fruits of Solanum xanthocarpum (Solanaceae), five new steroidal compounds were isolated and characterized: 4α-methyl-24ξ-ethyl-5α-cholest-7-en-3β,22ξ-diol (1), 3β,22ξ-dihydroxy-4α-methyl-24ξ-ethyl-5α-cholest-7-en-6-one (2), 3β-benzoxy-14β,22ξ-dihydroxy-4α-methyl-24ξ-ethyl-5α-cholest-7-en-6-one (3), 3β-benzoxy-14α,22ξ-dihydroxy-4α-methyl-24ξ-ethyl-5α-cholest-7-en-6-one (4) and 3β-(p-hydroxy)-benzoxy-22ξ-hydroxy-4α-methyl-24ξ-ethyl-5α-cholest-7-en-6-one (5).  相似文献   

12.
Pleurotus cornucopiae (Pleurotaceae) is an edible and medicinal mushroom widely distributed in Korea, China, and Japan. The MeOH extract of the fruiting bodies of P. cornucopiae showed renoprotective effects against cisplatin-induced kidney cell damage. Chemical investigation of the MeOH extract led to the isolation and identification of 12 compounds including noransine (1), uridine (2), uracil (3), (3β, 5α, 6β, 22E, 24S) -ergosta-7, 22-diene-3, 5, 6, 9-tetrol (4), (22E,24S)-ergosta-7,22-diene-3β,5α,6β-triol (5), (22E,24R)-ergosta-8(14),22-diene-3β,5α,6β,7α-tetrol (6), cerebroside B (7), (2R) -N- [(1S, 2R, 3E, 7E) -1- [(β-d-glucopyranosyloxy) methyl] -2-hydroxy-8-methyl-3, 7-heptadecadien-1-yl] -2-hydroxy-heptadecanamide (8), cerebroside D (9), nicotinamide (10), 1,2-bis(hydroxymethyl)-4,5-dimethoxybenzene (11), and benzoic acid (12). Among them, compounds 1 and 11 were isolated as naturally occurring products for the first time, though they were reported as synthetic products in previous papers. All of the compounds (except 8 and 11) abrogated cisplatin-induced LLC-PK1 cell damage in a dose-dependent manner. Of special note, compounds 2, 5, 6, and 12 ameliorated cisplatin-induced nephrotoxicity to 80% of the control value at 10 μM. The protective effects of compounds 2, 5, 6, and 12 were mediated via the deactivation of JNK-caspase 3 apoptotic cascade. This study is the first to demonstrate that the chemical constituents of P. cornucopiae display renoprotective effects against anticancer drug-induced damage in kidney cells.  相似文献   

13.
《Carbohydrate research》1986,147(2):237-245
The reaction of diglycol- and thiodiglycol-aldehyde (1a,b) with cyanoacetamide yields cis-3,5-diacetoxy-4-carbamoyl-4-cyano-tetrahydropyran (2a) and -tetrahydrothiopyran (2b). When this reaction is applied to (2S)-2-(3-ethoxycarbonyl-2-methyl-5-furyl)-3,5-dihydroxy-1,4-dioxane (1c), (2S)-3,5-dihydroxy-2-(3-methoxycarbonyl-2-methyl-5-furyl)-1,4-dioxane (1d), and (2S,3R,5S)-2-(3-acetyl-2-methyl-5-furyl)-3,5-dihydroxy-1,4-dioxane (1e), 5-(3-carbamoyl-3-cyano-3-deoxy-β-d-xylo-pentopyranosyl)-3-ethoxycarbonyl-2-methylfuran (2c), 5-(2,4-di-O-acetyl-3-carbamoyl-3-cyano-3-deoxy-β-d-xylo-pentopyranosyl)-3-methoxycarbonyl-2-methylfuran (2e), and 3-acetyl-5-(2,4-di-O-acetyl-3-carbamoyl-3-cyano-3-deoxy-β-d-xylo-pentopyranosyl)-2-methylfuran (2f), respectively, are formed with (4S,5S)-4-carbamoyl-4-cyano-2-(3-ethoxycarbonyl-2-methyl-5-furyl)-5-hydroxy-5,6-dihydropyran (3a) and (4S,5S)-4-carbamoyl-4-cyano-5-hydroxy-2-(3-methoxycarbonyl-2-methyl-5-furyl)-5,6-dihydropyran (3b) as minor products. The dehydration of 2a,b, 5-(2,4-di-O-acetyl-3-carbamoyl-3-cyano-3-deoxy-β-d-xylo-pentopyranosyl)-3-ethoxycarbonyl-2-methylfuran (2d), 2e, and 2f yields cis-3,5-diacetoxy-4,4-dicyano-tetrahydropyran and -tetrahydrothiopyran (2l,m), and the 5-(2,4-di-O-acetyl-3,3-dicyano-3-deoxy-β-d-erythro-pentopyranosyl) derivatives (2n–p) of 3-ethoxycarbonyl-2-methylfuran, 3-methoxycarbonyl-2-methylfuran, and 3-acetyl-2-methylfuran, respectively.  相似文献   

14.
Three new arylbenzofurans, 7-methoxy-2-(4-methoxyphenyl)-3-methyl-5-(3-prenyl)-benzofuran (1), 2-(4-methoxyphenyl)-3-methyl-5-(3-prenyl)-benzofuran-7-ol (2), 2-(4-hydroxy-3,5-dimethoxyphenyl)-3-methyl-5-(3-prenyl)benzofuran-7-ol (3), along with four known arylbenzofurans (47) were isolated from the fermentation products of an endophytic Phomopsis sp. Their structures were elucidated by spectroscopic methods including extensive 1D- and 2D-NMR techniques. In addition, compounds 17 were tested for their anti-tobacco mosaic virus (anti-TMV) activity. The results showed that compound 3 exhibited obvious anti-TMV activity with inhibition rate of 35.2% better than that of positive control (31.8%). The other compounds also showed potential anti-TMV activity with inhibition rates in the range of 18.6–25.7%, respectively.  相似文献   

15.
Five iridoid glycosides were isolated from the MeOH extract of Hedyotis diffusa, and their structures were elucidated as E-6-O-p-methoxycinnamoyl scandoside methyl ester (1), Z-6-O-p-methoxycinnamoyl scandoside methyl ester (2), E-6-O-p-feruloyl scandoside methyl ester (3), E-6-O-p-coumaroyl scandoside methyl ester (4), and Z-6-O-p-coumaroyl scandoside methyl ester (5) by interpretation of their spectroscopic data. All the isolated compounds were evaluated for human neutrophil elastase inhibitory effect, and compound 1 showed potent activity with an IC50 value of 18.0 μM. The molecular docking simulation suggested a structural model for the inhibition of human neutrophil elastase by compound 1.  相似文献   

16.
Methyl phenylphosphonite or dimethyl phosphite underwent acid-catalyzed addition reactions with some hexofuranos-5-ulose 5-(p-tolylsulfonylhydrazones) (7, 9, and 16), to give the corresponding adducts, 17, 18, 19, and 21. The isomer ratios of the adducts were affected by a 3-substituent in the hydrazones. Treatment of adduct 21 with sodium borohydride and sodium dihydrobis(2-methoxyethoxy)-aluminate (SDMA), followed by acid hydrolysis, gave 5,6-dideoxy-3-O-methyl-5-C-(phenylphosphinyl)-d-glucopyranose (26), which was acetylated to give the 1,2,4-tri-O-acetyl derivatives 27a and 27b. Conformational analysis of compound 27a by X-ray crystallography revealed that the compound was 1,2,4-tri-O-acetyl-5,6-dideoxy-3-O-methyl-5-C-[(S)-phenylphosphinyl]-β-d-glucopyranose in the 4C1(d) form having all substituents equatorial.  相似文献   

17.
A comprehensive phytochemical investigation of the stems and leaves of Schisandra chinensis (Turcz.) Baill. resulted in isolation of seventeen compounds, including five lignans: meso-dihydroguaiaretic acid (1), licarin-A (2), pregomisin (3), gomisin A (4), acutissimanide (5), three phenylpropanoids: 2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-propane-1,3-diol (6), 2-methoxy-4-(2-propenyl) phenyl β-D-glucopyranoside (7), erigeside 2 (8), six sesquiterpenoids: 7′-hydroxy-abscisic acid (9), burmannic acid (10), (3S,5R,6R,7E)-3,5,6-trihydroxy-7-megastigmen-9-one (11), 3-Cyclohexene-1,2-diol, 4-(3-hydroxybutyl)- 3, 5, 5-trimethyl- (12), (−)-loliolide (13), (3Z,5R,8R,11R)-Caryophyll-3-ene-5,8,15-triol (14), one monoterpenoid: (6R,3Z)-6,7-dihydroxy-3,7-dimethyl-2-octenoic acid (15) and two other compounds: methyl shikimate (16), 4-Hydroxydodec-2-enedioic acid (17). Their chemical structures were confirmed through NMR, HRESIMS and comparison with the data in the literature. This is the first report of compounds 5, 6, 815, 17 from the family Schisandraceae and compounds 2, 16 from the genus Schisandra. Furthermore, we performed a chemotaxonomic study of the separated compounds.  相似文献   

18.
Photo-oxygenation of 3-hydroxymethyl-5-(2,3-O-isopropylidene-β-d-erythrofuranosyl)-2-methylfuran, 5-(1,2:3,4-di-O-isopropylidene-d-arabino-tetritol-1-yl)-3-(1-hydroxyethyl)-2-methylfuran (8a), and 2-methyl-5-(1,2,3,4-tetra-O-acetyl-d-arabino-tetritol-1-yl)-3-furoic acid (8b) yielded the corresponding endo-peroxides, which were transformed into 4-hydroxymethyl-6-(2,3-O-isopropylidene-β-d-erythrofuranosyl)-3-methylpyridazine, 6-(1,2:3,4-di-O-isopropylidene-d-arabino-tetritol-1-yl)-4-(1-hydroxyethyl)-3-methylpyridazine, and 6-(d-arabino-tetritol-1-yl)-3-methylpyridazine by treatment with hydrazine. The γ-di-ketones (Z)-1-(1,2:3,4-di-O-isopropylidene-d-arabino-tetritol-1-yl)-3-(1-hydroxyethyl)pent-2-ene-1,4-dione and d-arabino-6,7,8,9-tetraacetoxy-4-methoxynonane-2,5-dione can be obtained by reduction of the endo-peroxides 9a and 9b (derived from 8a and 8b, respectively) with dimethyl sulphide. The C → O rearrangement reported for C-glycosyl endo-peroxides was also observed for 9a.  相似文献   

19.
Microbial transformation of isosteviol oxime (ent-16-E-hydroxyiminobeyeran-19-oic acid) (2) with Aspergillus niger BCRC 32720 and Absidia pseudocylindrospora ATCC 24169 yielded several compounds. In addition to bioconverting the d-ring to lactone and lactam moieties, 4α-carboxy-13α-hydroxy-13,16-seco-ent-19-norbeyeran-16-oic acid 13,16-lactone (7) and 4α-carboxy-13α-amino-13,16-seco-ent-19-norbeyeran-16-oic acid 13,16-lactam (10), one known compound, ent-1β,7α-dihydroxy-16-oxo-beyeran-19-oic acid (6), and five new compounds, ent-7α-hydroxy-16-E-hydroxyiminobeyeran-19-oic acid (3), ent-1β,7α-dihydroxy-16-E-hydroxyiminobeyeran-19-oic acid (4), ent-1β-hydroxy-16-E-hydroxyiminobeyeran-19-oic acid (5), ent-8β-cyanomethyl-13-methyl-12-podocarpen-19-oic acid (8), and ent-8β-cyanomethyl-13-methyl-13-podocarpen-19-oic acid (9), were isolated from the microbial transformation of 2. Elucidation of the structures of these isolated compounds was primarily based on 1D and 2D NMR, and HRESIMS data, and 35 were further confirmed by X-ray crystallographic analyses. Additionally, the inhibitory effects of all of these compounds were evaluated on NF-κB and AP-1 activation in LPS-stimulated RAW 264.7 macrophages. Among the compounds tested, 5 and 10 significantly inhibited NF-κB activation, with 5 showing equal potency to dexamethasone; 3 and 69 significantly inhibited AP-1 activation, particularly 8, which showed more inhibitory activity than dexamethasone.  相似文献   

20.
The mallo prenol isolated from the leaves of Mallotus japonicus was elucidated to be a mixture of (2Z,6Z, 10Z, 14Z, 18Z, 22Z, 26E, 30E, 34E)-3,7,11,15,19,23,27,31,35,39-decamethyl-2,6,10,14,18,22,26,30,34,38-tetracontadecaen-1-ol and its C45- and C55-homologues and not the previously reported structure. The malloprenols were demonstrated to be biosynthesized by successive cis condensation of isoprene residues with (2E, 6E, 10E)-geranylgeranyl pyrophosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号