首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Sex allocation theory predicts that parents are selected to bias their progeny sex ratio (SR) toward the sex that will benefit the most from parental quality. Because parental quality may differentially affect survival of sons and daughters, a pivotal test of the adaptive value of SR adjustment is whether parents overproduce offspring of the sex that accrues larger fitness advantages from high parental quality. However, this crucial test of the long‐term fitness consequences of sex allocation decisions has seldom been performed. In this study of the barn swallow (Hirundo rustica), we showed a positive correlation between the proportion of sons and maternal annual survival. We then experimentally demonstrated that this association did not depend on the differential costs of rearing offspring of either sex. Finally, we showed that maternal lifespan positively predicted lifespan of sons but not of daughters. Because in barn swallows lifespan is a strong determinant of lifetime reproductive success, the results suggest that mothers overproduce offspring of the sex that benefits the most from maternal quality. Hence, irrespective of mechanisms causing the SR bias and mother–son covariation in lifespan, we provide strong evidence that sex allocation decisions of mothers can highly impact on their lifetime fitness.  相似文献   

2.
Theory predicts that organisms living in heterogeneous environmentswill exhibit phenotypic plasticity. One trait that may be particularlyimportant in this context is the clutch or brood size becauseit is simultaneously a maternal and offspring characteristic.In this paper, I test the hypothesis that the burying beetle,Nicrophorus orbicollis, adjusts brood size, in part, in anticipationof the reproductive environment of its adult offspring. N. orbicollisuse a small vertebrate carcass as a food resource for theiryoung. Both parents provide parental care and actively regulatebrood size through filial cannibalism. The result is a positivecorrelation between brood size and carcass size. Adult bodysize is an important determinant of reproductive success forboth sexes, but only at higher population densities. I testthree predictions generated by the hypothesis that beetles adjustbrood size in response to population density. First, averageadult body size should vary positively with population density.Second, brood size on a given-sized carcass should be larger(producing more but smaller young) in low-density populationsthan in high-density populations. Third, females should respondadaptively to changes in local population density by producinglarger broods when population density is low and small broodswhen population density is high. All three predictions weresupported using a combination of field and laboratory experiments.These results (1) show that brood size is a phenotypically plastictrait and (2) support the idea that brood size decisions arean intergenerational phenomenon that varies with the anticipatedcompetitive environment of the offspring.  相似文献   

3.
Harsh environmental conditions in form of low food availability for both offspring and parents alike can affect breeding behavior and success. There has been evidence that food scarce environments can induce competition between family members, and this might be intensified when parents are caring as a pair and not alone. On the other hand, it is possible that a harsh, food-poor environment could also promote cooperative behaviors within a family, leading, for example, to a higher breeding success of pairs than of single parents. We studied the influence of a harsh nutritional environment on the fitness outcome of family living in the burying beetle Nicrophorus vespilloides. These beetles use vertebrate carcasses for reproduction. We manipulated food availability on two levels: before and during breeding. We then compared the effect of these manipulations in broods with either single females or biparentally breeding males and females. We show that pairs of beetles that experienced a food-poor environment before breeding consumed a higher quantity of the carcass than well-fed pairs or single females. Nevertheless, they were more successful in raising a brood with higher larval survival compared to pairs that did not experience a food shortage before breeding. We also show that food availability during breeding and social condition had independent effects on the mass of the broods raised, with lighter broods in biparental families than in uniparental ones and on smaller carcasses. Our study thus indicates that a harsh nutritional environment can increase both cooperative as well as competitive interactions between family members. Moreover, our results suggest that it can either hamper or drive the formation of a family because parents choose to restrain reproductive investment in a current brood or are encouraged to breed in a food-poor environment, depending on former experiences and their own nutritional status.  相似文献   

4.
Across animal taxa, reproductive success is generally more variable and more strongly dependent upon body condition for males than for females; in such cases, parents able to produce offspring in above‐average condition are predicted to produce sons, whereas parents unable to produce offspring in good condition should produce daughters. We tested this hypothesis in the collared flycatcher (Ficedula albicollis) by cross‐fostering eggs among nests and using the condition of foster young that parents raised to fledging as a functional measure of their ability to produce fit offspring. As predicted, females raising heavier‐than‐average foster fledglings with their social mate initially produced male‐biased primary sex ratios, whereas those raising lighter‐than‐average foster fledglings produced female‐biased primary sex ratios. Females also produced male‐biased clutches when mated to males with large secondary sexual characters (wing patches), and tended to produce male‐biased clutches earlier within breeding seasons relative to females breeding later. However, females did not adjust the sex of individuals within their clutches; sex was distributed randomly with respect to egg size, laying order and paternity. Future research investigating the proximate mechanisms linking ecological contexts and the quality of offspring parents are able to produce with primary sex‐ratio variation could provide fundamental insight into the evolution of context‐dependent sex‐ratio adjustment.  相似文献   

5.
Population fluctuations can be affected by both extrinsic (e.g. weather patterns, food availability) and intrinsic (e.g. life‐history) factors. A key life‐history tradeoff is the production of offspring size versus number, ranging from many small offspring to few large offspring. Models show that this life‐history tradeoff in offspring size and number, through maturation time, can have significant impacts on population dynamics. However, few manipulative experiments have been conducted that can isolate life‐history effects from impacts of extrinsic factors in consumer–resource systems. We experimentally tested the effect of an offspring size–number tradeoff on population stability and food availability in a consumer–resource system. Using Daphnia pulex, we created a shift from many, small offspring being produced to fewer, larger offspring. Two sets of experiments were performed to examine the interaction of an extrinsic factor (light levels) and intrinsic population structure on dynamics, and we controlled for the ingestion pressure on algal prey at the time of the manipulation. We predicted that the tradeoff would impact internal consumer population characteristics, including biasing the stage structure towards adults, increasing adult size, and increasing average population‐level reproduction. This adult‐dominated stage structure was predicted to then lead to instability and a low quantity–high quality food state. Under all light levels, the manipulated populations became dominated by large adults. Contrary to predictions, the amplitudes of fluctuations in Daphnia biomass were lower in populations shifted to few–large offspring, representing higher stability in these populations. Furthermore, in high light conditions, a stable low Daphnia – high algae biomass (low food quality) state was observed in few–large offspring treatments but not in control (many–small offspring) treatments. Our results show a strong link between light levels as an extrinsic factor and the life‐history tradeoff of consumer offspring size versus number that impacts consumer–resource population dynamics through feedbacks with resource quality.  相似文献   

6.
Early‐life conditions can drive ageing patterns and life history strategies throughout the lifespan. Certain social, genetic and nutritional developmental conditions are more likely to produce high‐quality offspring: those with good likelihood of recruitment and productivity. Here, we call such conditions “favoured states” and explore their relationship with physiological variables during development in a long‐lived seabird, the black‐legged kittiwake (Rissa tridactyla). Two favoured states were experimentally generated by manipulation of food availability and brood size, while hatching order and sex were also explored as naturally generating favoured states. Thus, the favoured states we explored were high food availability, lower levels of sibling competition, hatching first and male sex. We tested the effects of favoured developmental conditions on growth, stress, telomere length (a molecular marker associated with lifespan) and nestling survival. Generation of favoured states through manipulation of both the nutritional and social environments furthered our understanding of their relative contributions to development and phenotype: increased food availability led to larger body size, reduced stress and higher antioxidant status, while lower sibling competition (social environment) led to lower telomere loss and longer telomere lengths in fledglings. Telomere length predicted nestling survival, and wing growth was also positively correlated with telomere length, supporting the idea that telomeres may indicate individual quality, mediated by favoured states.  相似文献   

7.
Adjustment of offspring sex ratios should be favoured by natural selection when parents are capable of facultatively altering brood sex ratios and of recognizing the circumstances that predict the probable fitness benefit of producing sons and daughters. Although experimental studies have shown that female birds may adjust offspring sex ratios in response to changes in their own condition and in the external appearance of their mate, and male attributes other than his external morphology are also thought to act as signals of male quality, it is not known whether females will respond to changes in such signals, in the absence of any change in the appearance of the male himself. Here, we experimentally manipulated a male courtship display, the green plants carried to the nest by male spotless starlings (Sturnus unicolor), without changing any physical attributes of the male himself, and examined whether this influenced female decisions on offspring sex ratio. We found that in an environment in which female starlings were producing more daughters than sons, experimental enhancement of the green nesting material caused females to significantly increase the number of male eggs produced and thereby removed the female bias. This effect was consistent in 2 years and at two localities. This demonstrates that the green material, whose function has long puzzled biologists, conveys important information to the female and that she facultatively adjusts offspring production accordingly.  相似文献   

8.
A growing number of bird species are known to have fine‐scale genetic structure during the breeding season, with relatives breeding in close vicinity. Such genetic structure often has fitness consequences for parents, and sex ratio theory predicts that females should respond adaptively when they determine offspring sex. We examined whether or not females allocate offspring sex adaptively in response to the local genetic structures as well as other biotic and abiotic factors in a population of the vinous‐throated parrotbill Paradoxornis webbianus, a small passerine with strong flocking habit and various genetic structures among neighbouring males during the breeding season. The average brood sex ratio of hatchlings (secondary sex ratio) did not deviate from parity. In addition, the observed brood sex ratio was independent of the fine‐scale genetic structure and other factors including breeding density, clutch size, laying date, parents’ quality, and the presence of extrapair paternity. Accordingly, we reject the hypothesis of adaptive sex allocation by female parrotbills in association with local genetic structure and other factors. Instead we conclude that despite the plausible benefits of biased sex allocation, this species determines brood sex ratio via random sex allocation with equal probability of male and female offspring.  相似文献   

9.
Environments causing variation in age‐specific mortality – ecological agents of selection – mediate the evolution of reproductive life‐history traits. However, the relative magnitude of life‐history divergence across selective agents, whether divergence in response to specific selective agents is consistent across taxa and whether it occurs as predicted by theory, remains largely unexplored. We evaluated divergence in offspring size, offspring number, and the trade‐off between these traits using a meta‐analysis in livebearing fishes (Poeciliidae). Life‐history divergence was consistent and predictable to some (predation, hydrogen sulphide) but not all (density, food limitation, salinity) selective agents. In contrast, magnitudes of divergence among selective agents were similar. Finally, there was a negative, asymmetric relationship between offspring‐number and offspring‐size divergence, suggesting greater costs of increasing offspring size than number. Ultimately, these results provide strong evidence for predictable and consistent patterns of reproductive life‐history divergence and highlight the importance of comparing phenotypic divergence across species and ecological selective agents.  相似文献   

10.
The resources available to an individual in any given environment are finite, and variation in life history traits reflect differential allocation of these resources to competing life functions. Nutritional quality of food is of particular importance in these life history decisions. In this study, we tested trade‐offs among growth, immunity and survival in 3 groups of greater wax moth (Galleria mellonella) larvae fed on diets of high and average nutritional quality. We found rapid growth and weak immunity (as measured by encapsulation response) in the larvae of the high‐energy food group. It took longer to develop on food of average nutritional quality. However, encapsulation response was stronger in this group. The larvae grew longer in the low‐energy food group, and had the strongest encapsulation response. We observed the highest survival rates in larvae of the low‐energy food group, while the highest mortality rates were observed in the high‐energy food group. A significant negative correlation between body mass and the strength of encapsulation response was found only in the high‐energy food group revealing significant competition between growth and immunity only at the highest rates of growth. The results of this study help to establish relationships between types of food, its nutritional value and life history traits of G. mellonella larvae.  相似文献   

11.
Sex-ratio optimization with helpers at the nest   总被引:4,自引:0,他引:4  
In many cooperatively breeding animals, offspring produced earlier in life assist their parents in raising subsequent broods. Such helping behaviour is often confined to offspring of one sex. Sex-allocation theory predicts that parents overproduce offspring of the helping sex, but the expected degree of sex-ratio bias was thought to depend on specific details of female and male life histories, hampering empirical tests of the theory. Here we demonstrate the following two theories. (i) If all parents produce the same sex ratio, the evolutionarily stable sex ratio obeys a very simple rule that is valid for a general class of life histories. The rule predicts that the expected sex-ratio bias depends on the product of only two parameters which are relatively easily measured: the average number of helping offspring per nest and the relative contribution to offspring production per helper. (ii) If the benefit of helping varies between parents, and parents facultatively adjust the sex ratio accordingly, then the population sex ratio is not necessarily biased towards the helping sex. For example, in line with empirical evidence, if helpers are produced under favourable conditions and parents do not adjust their clutch size to the number of helpers, then a surplus of the non-helping sex is expected.  相似文献   

12.
Cooperatively breeding birds have been used frequently to study sex allocation because the adaptive value of the sexes partly depends upon the costs and benefits for parents of receiving help. I examined patterns of directional sex allocation in relation to maternal condition (Trivers-Willard hypothesis), territory quality (helper competition hypothesis), and the number of available helpers (helper repayment hypothesis) in the superb starling, Lamprotornis superbus, a plural cooperative breeder with helpers of both sexes. Superb starlings biased their offspring sex ratio in relation to prebreeding rainfall, which was correlated with maternal condition. Mothers produced relatively more female offspring in wetter years, when they were in better condition, and more male offspring in drier years, when they were in poorer condition. There was no relationship between offspring sex ratio and territory quality or the number of available helpers. Although helping was male biased, females had a greater variance in reproductive success than males. These results are consistent with the Trivers-Willard hypothesis and suggest that although females in most cooperatively breeding species make sex allocation decisions to increase their future direct reproductive success, female superb starlings appear to base this decision on their current body condition to increase their own inclusive fitness.  相似文献   

13.
1. Reproductive success of individual females may be determined by density-dependent effects, especially in species where territory provides the resources for a reproducing female and territory size is inversely density-dependent.
2. We manipulated simultaneously the reproductive effort (litter size manipulation: ± 0 and + 2 pups) and breeding density (low and high) of nursing female bank voles Clethrionomys glareolus in outdoor enclosures. We studied whether the reproductive success (number and quality of offspring) of individual females is density-dependent, and whether females can compensate for increased reproductive effort when not limited by saturated breeding density.
3. The females nursing their young in the low density weaned significantly more offspring than females in the high density, independent of litter manipulation.
4. Litter enlargements did not increase the number of weanlings per female, but offspring from enlarged litters had lower weight than control litters.
5. In the reduced density females increased the size of their home range, but litter manipulation had no significant effect on spacing behaviour of females. Increased home range size did not result in heavier weanlings.
6. Mother's failure to successfully wean any offspring was more common in the high density treatment, whereas litter manipulation or mother's weight did not affect weaning success.
7. We conclude that reproductive success of bank vole females is negatively density-dependent in terms of number, but not in the quality of weanlings.
8. The nursing effort of females (i.e. the ability to provide enough food for pups) seems not to be limited by density-dependent factors.  相似文献   

14.
Begging signals of offspring are condition-dependent cues that are usually predicted to display information about the short-term need (i.e. hunger) to which parents respond by allocating more food. However, recent models and experiments have revealed that parents, depending on the species and context, may respond to signals of quality (i.e. offspring reproductive value) rather than need. Despite the critical importance of this distinction for life history and conflict resolution theory, there is still limited knowledge of alternative functions of offspring signals. In this study, we investigated the communication between offspring and caring females of the common earwig, Forficula auricularia, hypothesizing that offspring chemical cues display information about nutritional condition to which females respond in terms of maternal food provisioning. Consistent with the prediction for a signal of quality we found that mothers exposed to chemical cues from well-fed nymphs foraged significantly more and allocated food to more nymphs compared with females exposed to solvent (control) or chemical cues from poorly fed nymphs. Chemical analysis revealed significant differences in the relative quantities of specific cuticular hydrocarbon compounds between treatments. To our knowledge, this study demonstrates for the first time that an offspring chemical signal reflects nutritional quality and influences maternal care.  相似文献   

15.
Offspring quality may benefit from genetic dissimilarity between parents. However, genetic dissimilarity may trade‐off with additive genetic benefits. We hypothesized that when sexual selection produces sex‐specific selective scenarios, the relative benefits of additive genetic vs. dissimilarity may differ for sons and daughters. Here we study a sample of 666 red deer (Cervus elaphus) microsatellite genotypes, including males, females and their foetuses, from 20 wild populations in Spain (the main analyses are based on 241 different foetuses and 190 mother‐foetus pairs). We found that parental lineages were more dissimilar in daughters than in sons. On average, every mother was less related to her mate than to the sample of fathers in the population when producing daughters not sons. Male foetuses conceived early in the rutting season were much more inbred than any other foetuses. These differences maintained through gestation length, ruling out intrauterine mortality as a cause for the results, and indicating that the potential mechanism producing the association between parents’ dissimilarity and offspring sex should operate close to mating or conception time. Our findings highlight the relevance of considering the sex of offspring when studying genetic similarity between parents.  相似文献   

16.
Fisher's theory predicts equal sex ratios at the end of parentalcare if the costs and benefits associated with raising eachsex of offspring are equal. In raptors, which display variousdegrees of reversed sexual size dimorphism (RSD; females thelarger sex), sex ratios biased in favor of smaller males areonly infrequently reported. This suggests that offspring ofeach sex may confer different fitness advantages to parents.We examined the relative returns associated with raising eachsex of offspring of the brown falcon Falco berigora, a medium-sizedfalcon exhibiting RSD (males approximately 75% of female bodymass) and subsequent sex ratios. Female nestlings hatched eitherfirst or second did not receive more food nor did they hatchfrom larger eggs or remain dependent on parents for longer periodsthan male offspring from these hatch orders. Together with previousstudies this result indicates that even in markedly dimorphicspecies, the required investment to raise the larger sex islikely to be less than that predicted by body size differencesalone. Moreover, among last-hatched nestlings, both sexes faceda reduced food allocation and suffered a slower growth rateand thus final body size, with a concurrent increased probabilityof mortality. For last-hatched females the reduction in foodallocation was more marked, with complete mortality of all last-hatchedfemale nestlings monitored in this study. Once independent,males of any size but only larger females are likely to be recruitedinto the breeding population. The sex-biased food allocationamong last-hatched offspring favoring males thus reflects therelative returns to parents in raising a small member of eachsex.  相似文献   

17.
This paper proposes the generalized Trivers-Willard hypothesis (gTWH), which suggests that parents who possess any heritable trait which increases male reproductive success at a greater rate than female reproductive success in a given environment will have a higher-than-expected offspring sex ratio, and parents who possess any heritable trait which increases female reproductive success at a greater rate than male reproductive success in a given environment will have a lower-than-expected offspring sex ratio. Since body size (height and weight) is a highly heritable trait which increases male (but not female) reproductive success, the paper hypothesizes that bigger and taller parents have more sons. The analysis of both surviving children and recent pregnancies among respondents of the National Child Development Survey and the British Cohort Survey largely supports the hypothesis.  相似文献   

18.
The number of offspring attaining reproductive age is an important measure of an individual's fitness. However, reproductive success is generally constrained by a trade-off between offspring number and quality. We conducted a factorial experiment in order to study the effects of an artificial enlargement of offspring number and size on the reproductive success of female bank voles (Clethrionomys glareolus). We also studied the effects of the manipulations on growth, survival and reproductive success of the offspring. Potentially confounding effects of varying maternal quality were avoided by cross-fostering. Our results showed that the number of offspring alive in the next breeding season was higher in offspring number manipulation groups, despite their smaller body size at weaning. Offspring size manipulation had no effect on offspring growth or survival. Further, the first litter size of female offspring did not differ between treatments. In conclusion, females may be able to increase the number of offspring reaching reproductive age by producing larger litters, whereas increasing offspring size benefits neither the mother nor the offspring.  相似文献   

19.
The state of the environment parents are exposed to during reproduction can either facilitate or impair their ability to take care of their young. Thus, the environmental conditions experienced by parents can have a transgenerational impact on offspring phenotype and survival. Parental energetic needs and the variance in offspring predation risk have both been recognized as important factors influencing the quality and amount of parental care, but surprisingly, they are rarely manipulated simultaneously to investigate how parents adjust care to these potentially conflicting demands. In the maternally mouthbrooding cichlid Simochromis pleurospilus, we manipulated female body condition before spawning and exposure to offspring predator cues during brood care in a two‐by‐two factorial experiment. Subsequently, we measured the duration of brood care and the number and size of the released young. Furthermore, we stimulated females to take up their young by staged predator attacks and recorded the time before the young were released again. We found that food‐deprived females produced smaller young and engaged less in brood care behaviour than well‐nourished females. Final brood size and, related to this, female protective behaviour were interactively determined by nutritional state and predator exposure: well‐nourished females without a predator encounter had smaller broods than all other females and at the same time were least likely to take up their young after a simulated predator attack. We discuss several mechanisms by which predator exposure and maternal nutrition might have influenced brood and offspring size. Our results highlight the importance to investigate the selective forces on parents and offspring in combination, if we aim to understand reproductive strategies.  相似文献   

20.
The generalized Trivers-Willard hypothesis (gTWH) [Kanazawa, S., 2005. Big and tall parents have more sons: further generalizations of the Trivers-Willard hypothesis. J. Theor. Biol. 235, 583-590) proposes that parents who possess any heritable trait which increases the male reproductive success at a greater rate than female reproductive success in a given environment will have a higher-than-expected offspring sex ratio, and parents who possess any heritable trait which increases the female reproductive success at a greater rate than male reproductive success in a given environment will have a lower-than-expected offspring sex ratio. One heritable trait which increases the reproductive success of daughters much more than that of sons is physical attractiveness. I therefore predict that physically attractive parents have a lower-than-expected offspring sex ratio (more daughters). Further, if beautiful parents have more daughters and physical attractiveness is heritable, then, over evolutionary history, women should gradually become more attractive than men. The analysis of the National Longitudinal Study of Adolescent Health (Add Health) confirm both of these hypotheses. Very attractive individuals are 26% less likely to have a son, and women are significantly more physically attractive than men in the representative American sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号