共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between size at metamorphosis and adult size was studied in 12 closely-related species of frog from Malawi (Central Africa). These species of frogs breed in water of different durations, and occupy different habitats as adults. We could demonstrate no correlation between size at metamorphosis and size of adults when frogs were divided into groups on the basis of occupying similar habitats as adults, but when frogs were divided into groups on the basis of similar duration of larval habitat we demonstrated a strong correlation between size at metamorphosis and adult size. Thus we suggest that duration of the larval habitat is a major determinant of size at metamorphosis, with species which breed in the more temporary habitats metamorphosing at smaller size than species which breed in more permanent habitats, but which are of similar size as adults. Such manipulation of the life cycle appears to be adaptive since it results in individuals becoming independent of water earlier when the likelyhood of early loss of larval habitat is high. 相似文献
2.
Embryogenesis and larval development were documented in 19 species of hermatypic scleractinians which release gametes during the summer coral spawning season on the Great Barrier Reef. Cleavage of fertilized eggs began approximately 2 h after spawning in all species, and gave rise to blastulae after 7–10 h. Endoderm formation in Platygyra sinensis was by invagination, and this appeared to occur in all species studied. All species observed at 36 h after spawing were mobile and full mobility was reached by 48 h. Settlement of planulae placed in aquaria occurred between 4 and 7 days after fertilization. These results suggest that larval corals produced by most gamete-releasing coral species are likely to be dispersed away from the parent reef. 相似文献
3.
4.
Global warming may induce significant changes in species life history traits particularly in amphibians, which are characterized by complex and plastic life cycles. Because both warming and predators are often suggested to reduce size at metamorphosis in amphibians, we hypothesized that the size at metamorphosis was further reduced by experimental warming in the presence of predators. We conducted a factorial-designed experiment involving two factors and two levels (warmed vs. ambient, lethal predator absence vs. presence, resulting in four treatments) using Rana kukunoris tadpoles in the eastern Tibetan Plateau, and we examined its behavioral, growth, and developmental responses to warming in the presence and absence of predatory beetles (Agabus sp.) for 13 weeks. During the course of the experiment, a similar level of tadpole mortality due to the diving beetles was found between ambient and warmed treatments, but the warming effect on size at metamorphosis depended on whether the predators were present or absent. In the absence of predators, warming did not significantly increase tadpole growth but advanced the timing of metamorphosis, such that size at metamorphosis of forelimb emergence and tail resorption was much reduced in terms of body fresh weight. In the presence of predators, warming increased tadpole growth rate much more than the development rate (as reflected by duration of the tadpole stage), and therefore the size at metamorphosis was significantly increased. The significant effect of the interaction between predator and warming on the size at metamorphosis could be attributed to the tadpole response in the frequencies of feeding, resting, and swimming to the predator activity level, which was in turn increased by warming. We suggest that warming-induced changes in life history traits should be studied in relation to species interaction so as to accurately predict ecological response of amphibians to the future warmed world. 相似文献
5.
Takashi Atobe Yutaka Osada Hayato Takeda Misako Kuroe Tadashi Miyashita 《Proceedings. Biological sciences / The Royal Society》2014,281(1786)
Habitat connectivity is considered to have an important role on the persistence of populations in the face of habitat fragmentation, in particular, for species with conservation concern. However, it can also impose indirect negative effects on native species through the spread of invasive species. Here, we investigated direct and indirect effects of habitat connectivity on populations of invasive bullfrogs and native wrinkled frogs and how these effects are modified by the presence of common carp, a resident shared predator, in a farm pond system in Japan. The distribution pattern analysis using a hierarchical Bayesian modelling indicated that bullfrogs had negative effects on wrinkled frogs, and that these negative effects were enhanced with increasing habitat connectivity owing to the metapopulation structure of bullfrogs. The analysis also suggested that common carp mitigated these impacts, presumably owing to a top-down trophic cascade through preferential predation on bullfrog tadpoles. These presumed interspecific interactions were supported by evidence from laboratory experiments, i.e. predation by carp was more intense on bullfrog tadpoles than on wrinkled frog tadpoles owing to the difference in refuge use. Our results indicate that metacommunity perspectives could provide useful insights for establishing effective management strategies of invasive species living in patchy habitats. 相似文献
6.
7.
An innately interesting decade of research in immunology 总被引:6,自引:0,他引:6
Germain RN 《Nature medicine》2004,10(12):1307-1320
"Nature has provided, in the white corpuscles as you call them-in the phagocytes as we call them-a natural means of devouring and destroying all disease germs. There is at bottom only one genuinely scientific treatment for all diseases, and that is to stimulate the phagocytes." So opined B.B. in G.B. Shaw's The Doctor's Dilemma in a dramatic restatement of a key portion of Ilya Metchnikoff's Nobel Prize address: "Whenever the organism enjoys immunity, the introduction of infectious microbes is followed by the accumulation of mobile cells, of white corpuscles of the blood in particular which absorb the microbes and destroy them. The white corpuscles and the other cells capable of doing this have been designated 'phagocytes,' (i.e., devouring cells) and the whole function that ensures immunity has been given the name of 'phagocytosis'". Based on these insights into the foundation of resistance to infectious disease, Metchnikoff was awarded the 1908 Nobel Prize in Physiology or Medicine together with Paul Ehrlich (Fig. 1). Although both were cited for discoveries in immunity, the contributions of the two men seem worlds apart. Ehrlich's studies did not deal with generic responses to infection, but rather with the highly specific nature of antibodies and their relationship to the cells producing them: "As the cell receptor is obviously preformed, and the artificially produced antitoxin only the consequence, i.e. secondary, one can hardly fail to assume that the antitoxin is nothing else but discharged components of the cell, namely receptors discharged in excess". But biological systems are just that-systems-and the parts need to work together. And so we arrive, a century later, at an appreciation for just how intimately related these two seemingly disparate aspects of host defense really are. 相似文献
8.
Anuradha Batabyal Sachin M Gosavi Narahari P Gramapurohit 《Journal of biosciences》2014,39(4):701-710
Successful survival and reproduction of prey organisms depend on their ability to detect their potential predators accurately and respond effectively with suitable defences. Predator detection can be innate or can be acquired through learning. We studied prey–predator interactions in the larval bronzed frogs (Sylvirana temporalis), which have the innate ability to detect certain predators. We conducted a series of experiments to determine if the larval S. temporalis rely solely on innate predator detection mechanisms or can also learn to use more specific cues such as conspecific alarm cues for the purpose. The results of our study clearly indicate that larval S. temporalis use both innate and learned mechanisms for predator detection. Predator-naïve tadpoles could detect kairomones alone as a potential threat and responded by reducing activity, suggesting an innate predator detection mechanism. Surprisingly, predator-naïve tadpoles failed to detect conspecific alarm cues as a potential threat, but learned to do so through experience. After acquiring the ability to detect conspecific alarm cues, they could associate novel predator cues with conspecific alarm cues. Further, post feeding stages of larval S. temporalis are sensitive for learning to detect conspecific alarm cues to label novel predators. 相似文献
9.
R. A. F. van den Meiracker W. N. O. Hammond J. J. M. van Alphen 《Entomologia Experimentalis et Applicata》1990,56(3):209-217
We studied searching behaviour of Diomus sp., a coccinellid predator introduced into Africa as a natural enemy of the cassava mealybug, when searching on cassava leaves, and compared its behaviour with the searching behaviour of Exochomus sp., an African predator of mealybugs (MB's). Female adults of Diomus and Exochomus spent more time searching on cassava leaves previously infested with cassava MB than on clean cassava leaves, in response to substances produced by MB's (wax and/or honeydew) still present on these leaves as kairomones after removal of the MB's. Both species were also arrested by wax and/or honeydew of the citrus mealybug, Planococcus citri. When offered a choice between kairomones of both MB species only experienced Diomus (reared on cassava MB) showed a clear preference for kairomone of cassava MB. Separate influences of wax and honeydew were tested. Wax from cassava MB was an arrestment stimulus for both coccinellid species. Honeydew produced by cassava MB arrested Exochomus and inexperienced Diomus.
Zusammenfassung Das Suchverhalten auf Cassaveblätter des coccinelliden Raübers Diomus, eines aus Süd Amerika importierten natürlichen Feindes der Cassaveschmierlaus wurde studiert und verglichen mit dem Suchverhalten eines afrikanischen Räubers von Schmierläusen, Exochomus sp.. Weiblichen Adulten von Diomus un Exochomus verwendeten mehr Zeit auf Cassaveblätter wenn diese Blätter vorher mit Cassaveschmierläuse infiziert waren als auf uninfizierte Blätter, und gebrauchten Substanzen (Wachs und/oder Honigtau) die von Schmierläuse produziert wurden und nach der Entfernung der Schmierläuse auf die Blätter zugeblieben waren als Kairomonen.Beide Arten wurden auch von Wachs und/oder Honigtau der Citrusschmierlaus, Planococcus citri, auf den Blätter arretiert. Wenn die Tiere wahlen könnten zwischen Kairomone der beiden Schmierlausarten wurden die Kairomonen der Cassaveschmierlaus nur von erfahrenen Diomus-Individuen, die auf Cassaveschmierlaüse aufgezogen wurden, bevorzugt.Die Einflüsse von Wachs und Honigtau wurden separat geprüft. Wachs von Exuvien der Cassaveschmierlaus ist ein Arretierungsstimulus für beide Räuberarten. Von Cassaveschmierläusen produzierten Honigtau arretierte Exochomus-und unerfahrene Diomus-Individuen.相似文献
10.
Pancharatna K Rajapurohit SV Hiregoudar SR Kumbar SM 《Indian journal of experimental biology》2001,39(9):933-935
Effects of exogenous androgens (testosterone, testosterone propionate and dihydrotestosterone) and estradiol-17beta on the oviductal growth/hypertrophy were studied in young and bilaterally ovariectomized (BLO) adult frogs (Rana cyanophlyctis) during postbreeding phase of the reproductive cycle. Estradiol-17beta injections induced oviductal hypertrophy to the maximal extent among hormone treated groups. In androgen treated frogs also there was an increase in the oviductal dry weight and protein content both in young and BLO adult frogs, suggesting the role of endogenous androgens in controlling the growth of oviduct in R. cyanophlyctis. 相似文献
11.
在(27±1)℃,光周期L∶D=12∶12的条件下对酪蝇Piophila casei L.交配行为及能力进行了研究。结果表明,雌虫在羽化1min后即可交配,而雄虫在羽化30min后进行交配。进一步观察结果表明,羽化后80min的两性成虫交配率最高(90%),成虫一天之中的交配高峰期出现在10∶00—11∶00,次高峰出现在11∶00—12∶00。两性交配持续时间从4~9min不等,以5min为最多(43.3%),6min次之(23.3%)。一般情况下,雌虫一生只交配1次,雄虫从1~7次不等,但以2次为最多(45%),3次的次之(20%)。 相似文献
12.
Background
An intense, 30-year, ongoing biodiversity inventory of Lepidoptera, together with their food plants and parasitoids, is centered on the rearing of wild-caught caterpillars in the 120,000 terrestrial hectares of dry, rain, and cloud forest of Area de Conservacion Guanacaste (ACG) in northwestern Costa Rica. Since 2003, DNA barcoding of all species has aided their identification and discovery. We summarize the process and results for a large set of the species of two speciose subfamilies of ACG skipper butterflies (Hesperiidae) and emphasize the effectiveness of barcoding these species (which are often difficult and time-consuming to identify).Methodology/Principal Findings
Adults are DNA barcoded by the Biodiversity Institute of Ontario, Guelph, Canada; and they are identified by correlating the resulting COI barcode information with more traditional information such as food plant, facies, genitalia, microlocation within ACG, caterpillar traits, etc. This process has found about 303 morphologically defined species of eudamine and pyrgine Hesperiidae breeding in ACG (about 25% of the ACG butterfly fauna) and another 44 units indicated by distinct barcodes (n = 9,094), which may be additional species and therefore may represent as much as a 13% increase. All but the members of one complex can be identified by their DNA barcodes.Conclusions/Significance
Addition of DNA barcoding to the methodology greatly improved the inventory, both through faster (hence cheaper) accurate identification of the species that are distinguishable without barcoding, as well as those that require it, and through the revelation of species “hidden” within what have long been viewed as single species. Barcoding increased the recognition of species-level specialization. It would be no more appropriate to ignore barcode data in a species inventory than it would be to ignore adult genitalia variation or caterpillar ecology. 相似文献13.
KENNETH SCHOENLY 《Ecological Entomology》1990,15(3):333-345
Abstract. 1. Insect–insectivore trophic relations were reviewed using presence–absence data from sixty-one invertebrate-dominated food webs and fifteen food webs from Briand's (1983) original forty web collection. From counts of prey links in higher taxa (orders, classes, phyla), six phyla and thirteen classes of non-insect insectivores and fourteen orders of insect predators and prey were found. 2. Detritus-based habitats (phytotelmata, felled logs, carcasses, dungpads) harboured fewer orders of insects, that interact with other insects, than webs from grazer-based (host plants, some galls) and mixed-based systems (aquatic webs). Consumer–resource networks of higher insect taxa in these webs shared several features found in some species-level biological networks: the trend was towards few pairs of strong asymmetrical links, several weak links and many null interactions. 3. From counts of insect predator–insect prey links, hymenopterans as terrestrial predators and parasitoids interacted with the most number of higher insect taxa. Hymenopterans were also linked as prey more often than other terrestrial insects. In freshwater habitats, plecopterans were linked as predators more often than other aquatic taxa, whereas dipterans were listed as prey more often than other insects. 4. Dipterans were linked in the diets of non-insect insectivores from seven of eight common taxonomic classes. Arachnids were identified as insect predators by food web researchers in the largest number of webs, followed by passerine birds and cyprinodont fishes. From analysis of prey links at the ordinal level, predaceous insects were less polyphagous than other predators (other ectotherms and endotherms). 5. Analysis of chain lengths, as expected, showed that insect prey occupied mostly lowermost trophic levels, non-insect insectivores were found mostly at uppermost trophic levels, and predaceous insects were found mostly at intermediate trophic levels across most habitats. 6. This analysis offers evidence that insects are not just occupying intermediate trophic levels in some communities. Indeed, some taxa feed at the upper ends of long food chains, for example eupelmids in galls, staphylinids in carcasses, and perlid plecopterans in streams. 相似文献
14.
Root weevils in the genus Otiorhynchus are cited as one of the most important pests in the major nursery and small fruit production areas throughout the United States, western Canada, and northern Europe. A major problem in combating weevil attack is monitoring and timing of control measures. Because of the night-activity of the adult weevils growers do not observe the emerging weevils in a timely manner and oviposition often starts before effective control measures are taken. Several vine weevil electroantennogram-active plant volatiles were identified from a preferred host plant, Euonymus fortunei. Main compounds evoking antennal responses on the weevils' antennae were (Z)-2-pentenol, (E)-2-hexenol, (Z)-3-hexenol, methyl benzoate, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene, methyl eugenol, and (E, E)-alpha-farnesene. Several of these compounds were tested alone and in mixtures on attractiveness for the vine weevil Otiorhynchus sulcatus (F.) in field-grown strawberry in Oregon. O. sulcatus were attracted to (Z)-2-pentenol (approximately 3 x more than control) and a 1:1 ratio mixture of (Z)-2-pentenol and methyl eugenol (4.5 x more than control). This is the first report of field-active attractants for O. sulcatus which holds promise for the development of new monitoring strategies for growers in the near future. 相似文献
15.
Almost no comparative studies are available on the use of general and specific infochemical cues by generalist parasitoids with hosts from different families feeding on host plants also from different families. Based on literature, two hypotheses were developed and tested with host recognition cues used by the larval parasitoid Lariophagus distinguendus . This generalist parasitizes beetle species from different families developing in seeds of plant species from the Poaceae and Fabaceae. The first hypothesis predicts that for initial encounters with host species, natural enemies should innately use general cues, which are common to all hosts and their food plants. The second hypothesis predicts that natural enemies should learn specific cues from host plant and host after experience with a host species. The first hypothesis was partly confirmed. L. distinguendus innately reacted to faecal cues from several host species and chemical analyses of faeces from these hosts revealed the common occurrence of chemicals that are used for host recognition by L. distinguendus . In disagreement with the first hypothesis, parasitoids did not innately respond to cues from plant seeds. Preference experiments on the influence of experience demonstrated an increased host recognition response towards a host after experience with it. In support of the second hypothesis, L. distinguendus females learned specific cues from herbivore-damaged wheat, rice and cowpea seeds and from the faeces of the bean weevil Callosobruchus maculatus . 相似文献
16.
Laura C. Rosenwald John T. Lill Eric. M. Lind Martha R. Weiss 《Arthropod-Plant Interactions》2017,11(6):833-842
Investigations of host plant selection in herbivorous arthropods have emphasized the importance of oviposition site selection by adults; however, a more complete picture of this process requires additional consideration of the factors influencing host plant choice during the immature feeding stages. We conducted a series of larval choice experiments to examine both the innate and induced preferences of larvae of the Silver-spotted skipper (Epargyreus clarus L.) on three commonly used hosts (Wisteria, Robinia, and Pueraria). Late instar E. clarus larvae reared on each of the three host plants displayed an overall pattern of innate preferences that correlated well with larval performance measures and reflected differences in foliar nutrient concentrations. Larval preferences were also influenced by rearing host species, indicating a role for feeding-induced preferences. When larvae reared on low-quality Wisteria for the first four instars were switched to higher quality Pueraria for the final instar, they developed more quickly and attained significantly higher pupal mass than larvae maintained on Wisteria throughout development. Similarly, larvae switched from Pueraria to Wisteria for the final instar suffered increased development time and produced significantly smaller pupae than those maintained on Pueraria throughout. Thus host-switching, particularly during the more mobile final instars, appears to offer larvae an opportunity to recoup fitness losses associated with early development on a low-quality host. For an equal amount of consumption, larvae feeding on Pueraria gained 50% more mass than those feeding on Wisteria, reflecting measured differences in foliar nitrogen concentration; despite these overall differences in quality, larval growth efficiency was similar among hosts. Especially in the age of common exotic plant introductions, a full understanding of the behavioral component of host selection by herbivorous insects requires appreciation of the dynamic role that immatures can play in host selection and use. 相似文献
17.
Samantha Fye Kunsang Dolma Min Jung Kang Shermali Gunawardena 《Journal of visualized experiments : JoVE》2010,(43)
Drosophila melanogaster is emerging as a powerful model system for studying the development and function of the nervous system, particularly because of its convenient genetics and fully sequenced genome. Additionally, the larval nervous system is an ideal model system to study mechanisms of axonal transport as the larval segmental nerves contain bundles of axons with their cell bodies located within the brain and their nerve terminals ending along the length of the body. Here we describe the procedure for visualization of synaptic vesicle proteins within larval segmental nerves. If done correctly, all components of the nervous system, along with associated tissues such as muscles and NMJs, remain intact, undamaged, and ready to be visualized. 3rd instar larvae carrying various mutations are dissected, fixed, incubated with synaptic vesicle antibodies, visualized and compared to wild type larvae. This procedure can be adapted for several different synaptic or neuronal antibodies and changes in the distribution of a variety of proteins can be easily observed within larval segmental nerves.Download video file.(43M, mov) 相似文献
18.
Models of metapopulations have often ignored local community dynamics and spatial heterogeneity among patches. However, persistence of a community as a whole depends both on the local interactions and the rates of dispersal between patches. We study a mathematical model of a metacommunity with two consumers exploiting a resource in a habitat of two different patches. They are the exploitative competitors or the competing predators indirectly competing through depletion of the shared resource. We show that they can potentially coexist, even if one species is sufficiently inferior to be driven extinct in both patches in isolation, when these patches are connected through diffusive dispersal. Thus, dispersal can mediate coexistence of competitors, even if both patches are local sinks for one species because of the interactions with the other species. The spatial asynchrony and the competition-colonization trade-off are usual mechanisms to facilitate regional coexistence. However, in our case, two consumers can coexist either in synchronous oscillation between patches or in equilibrium. The higher dispersal rate of the superior prompts rather than suppresses the inferior. Since differences in the carrying capacity between two patches generate flows from the more productive patch to the less productive, loss of the superior by emigration relaxes competition in the former, and depletion of the resource by subsidized consumers decouples the local community in the latter. 相似文献
19.
Parental care is incorporated into a prey-predator model in which immature predators are taken care of by their parents. It is assumed that adult predators confront the problem to stay home to protect offspring or to go out to forage. The global dynamics of the mathematical model is analyzed by means of analytical methods and numerical simulations. Conditions for the extinction of predator populations are established and the manners in which predators become extinct are revealed. Bifurcation analysis shows that the model admits changes from the extinction of predators to stable coexistence at a positive equilibrium point, and then to stage-structure induced oscillations. It is shown that optimal invest of adult predators can be achieved. 相似文献
20.
Wheat bulb fly, a pest of winter weat, has one generation a year and all stages exist for at least a month. The feeding larva inside the shoot is protected, except when moving to a new shoot, but all the other stages are exposed to attack by non-specific predators, either by soil-living beetles feeding on eggs and puparia in the soil, or predatory flies and birds feeding on the adults. 相似文献