首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new technique for single-step subcellular fractionation of adipose tissue homogenates by analytical sucrose density gradient centrifugation in a vertical pocket reorientating rotor is described. The density gradient distributions of mitochondrial and peroxisomal marker enzymes in brown and white adipose tissue of control and cold exposed rats are compared. The equilibrium density of brown fat mitochondria was found to be significantly increased compared with white fat mitochondria. GDP binding activity was localized solely to the mitochondria in both control and cold-adapted brown adipose tissue. Brown and white fat mitochondria fractions were isolated by differential centrifugation and the specific activities of various enzymes in the homogenate and mitochondrial preparations determined. The specific activity of creatine kinase in brown adipose tissue was found to be ten-fold higher than in white fat and subcellular fractionation studies showed the activity to have an exclusively cytosolic distribution in both tissues. GDP binding activity and some of the mitochondrial enzymes showed, in brown adipose, a striking increase in total activity in cold adapted rats compared to control animals. For some enzyme activities there was a small increase when expressed per mg tissue or per mg mitochondrial protein. When expressed per mg DNA i.e. per cell, there was a reduced specific activity of the mitochondrial and peroxisomal enzymes in both brown and white adipose tissue on cold adaptation.  相似文献   

2.
Bile acid coenzyme A:amino acid N-acyltransferase (BAT) is responsible for the amidation of bile acids with the amino acids glycine and taurine. To quantify total BAT activity in liver subcellular organelles, livers from young adult male and female Sprague-Dawley rats were fractionated into multiple subcellular compartments. In male and female rats, 65-75% of total liver BAT activity was found in the cytosol, 15-17% was found in the peroxisomes, and 5-10% was found in the heavy mitochondrial fraction. After clofibrate treatment, male rats displayed an increase in peroxisomal BAT specific activity and a decrease in cytosolic BAT specific activity, whereas females showed an opposite response. However, there was no overall change in BAT specific activity in whole liver homogenate. Treatment with rosiglitazone or cholestyramine had no effect on BAT activity in any subcellular compartment. These experiments indicate that the majority of BAT activity in the rat liver resides in the cytosol. Approximately 15% of BAT activity is present in the peroxisomal matrix. These data support the novel finding that clofibrate treatment does not directly regulate BAT activity but does alter the subcellular localization of BAT.  相似文献   

3.
The subcellular localization of renin and kallikrein in rat kidney cortex homogenate was investigated using both differential and density gradient centrifugation techniques. Highest specific activity of renin was found in the heavy mitochondrial fraction. Mitochondrial localization of renin was further supported by the behaviour of succinic dehydrogenase. By differential centrifugation, highest specific activity of kallikrein was found in the light mitochondrial fraction, while by density gradient centrifugation kallikrein was almost completely recovered in the lysosomal fraction. Lysosomal localization of kallikrein is further supported by the behaviour of acid phosphatase. The different subcellular localizations of renin and kallikrein are confirmed and the suggestion that kallikrein is located in the lysosomes is advanced.  相似文献   

4.
Microsomal squalene epoxidase has previously been solubilized with Triton X-100 and resolved into fractions, FA and FB, by DEAE-cellulose chromatography (Ono T. and Bloch K (1975) J biol. Chem. 250, 1571-1579). It has now been found that FB is identical with NADPH-cytochrome c reductase (denoted FPT, EC 1.6.2.3). Although both NADPH and NADH served as electron donors, the former was preferred for squalene epoxidase activity in the reconstituted system of FA and FB. FB is characterized by its ability to reduce cytochrome c by NADPH. In place of FB, partially purified FPT was tested for its ability to support squalene epoxidation in the presence of FA. A stepwise purification of the deoxycholate-solubilized FPT yielded an increase in specific FPT activity with a parallel increase in squalene epoxidase activity. Bromelain-solubilized FPT was less effective. Rabbit antisera preparations to the purified FPT solubilized with trypsin were shown to inhibit concomitantly FPT activity and squalene epoxidase activity. These observations support the concept that squalene epoxidation is primarily mediated via a flavoprotein, NADPH-cytochrome c reductase, and a terminal oxidase, squalene epoxidase, which is distinct from cytochrome P-450.  相似文献   

5.
The subcellular distributions of glutamyl carboxypeptidase, folate specific activities, and radioactive metabolites of injected [3H] folic acid were studied in rat liver. The specific activity of glutamyl carboxypeptidase in the lysosomal fraction was near or greater than four times that in the other subcellular fractions. The specific activity of folates was highest in the soluble fraction (102 ng folate/mg protein) and lowest in the microsomal fraction (22 ng folate/mg protein). Nuclear, mitochondrial, and lysosomal folates were 95% folate polyglutamates, and microsomal and soluble folates were 85--90% folate polyglutamates. Injected [3H] folic acid was initially concentrated in the microsomal fraction, as measured by 3h cpm per ng folate. Initially, injected [3H] folic acid was found converted to folate penta- and hexaglutamates in all fractions to a similar extent except in the microsomes where the percentage conversion was much less, as measured by the percentage of total 3H cpm determined to be [3H] folate penta- and hexaglutamates. At 24 h, the conversion of [3H] folates to penta- and hexaglutamates in each fraction was less than that found for the endogenous folates. Injected [3H] folic acid after 2h was found to consist of 94% reduced folates in the soluble fraction, 56% in the mitochondrial, 55% in the nuclear, 20% in the lysosomal, and 15% in the microsomal fraction.  相似文献   

6.
Subcellular distribution of spermidine/spermine N1-acetyltransferase   总被引:1,自引:0,他引:1  
The subcellular distribution of the polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase (SSAT) was studied in L56Br-C1 cells treated with 10 microM N(1),N(11)-diethylnorspermine (DENSPM) for 24 h. Cells were fractioned into three subcellular fractions. A particulate fraction containing the mitochondria was denoted as the mitochondrial fraction. After DENSPM treatment, an increase in SSAT activity was mainly found in the mitochondrial fraction. Western blot analysis showed an increased level of the SSAT protein in the mitochondrial fraction compared to the cytosolic fraction. Immunofluorescence microscopy and immunogold labeling transmission electron microscopy also showed a mitochondrial association of SSAT. Transmission electron microscopy revealed that the endoplasmic reticulum was devoid of ribosomes in DENSPM-treated cells, in contrast to control cells that contained ample ribosomes. An increased SSAT activity in connection with the mitochondria may be part of the mechanism of DENSPM-induced apoptosis.  相似文献   

7.
The present study has confirmed previous findings of long-chain acyl-CoA hydrolase activities in the mitochondrial and microsomal fractions of the normal rat liver. In addition, experimental evidence is presented in support of a peroxisomal localization of long-chain acyl-CoA hydrolase activity. (a) Analytical differential centrifugation of homogenates from normal rat liver revealed that this activity (using palmitoyl-CoA as the substrate) was also present in a population of particles with an average sedimentation coefficient of 6740 S, characteristic of peroxisomal marker enzymes. (b) The subcellular distribution of the hydrolase activity was greatly affected by administration of the peroxisomal proliferators clofibrate and tiadenol. The specific activity was enhanced in the mitochondrial fraction and in a population of particles with an average sedimentation coefficient of 4400 S, characteristic of peroxisomal marker enzymes. Three populations of particles containing lysosomal marker enzymes were found by analytical differential centrifugation, both in normal and clofibrate-treated rats. Our data do not support the proposal that palmitoyl-CoA hydrolase and acid phosphatase belong to the same subcellular particles. In livers from rats treated with peroxisomal proliferators, the specific activity of palmitoyl-CoA hydrolase was also enhanced in the particle-free supernatant. Evidence is presented that this activity at least in part, is related to the peroxisomal proliferation.  相似文献   

8.
1. The activities of acyl-CoA hydrolase, catalase, urate oxidase and peroxisomal palmitoyl-CoA oxidation as well as the protein content and the level of CoASH and long-chain acyl-CoA were measured in subcellular fractions of liver from rats fed diets containing phenobarbital (0.1% w/w) or clofibrate (0.3% w/w). 2. Whereas phenobarbital administration resulted in increased microsomal protein, the clofibrate-induced increase was almost entirely attributed to the mitochondrial fraction with minor contribution from the light mitochondrial fraction. 3. The specific activity of palmitoyl-CoA hydrolase in the microsomal fraction was only slightly affected while the mitochondrial enzyme was increased to a marked extent (3-4-fold) by clofibrate. 4. Phenobarbital administration mainly enhanced the microsomal palmitoyl-CoA hydrolase. 5. The increased long-chain acyl-CoA and CoASH level observed after clofibrate treatment was mainly associated with the mitochondrial, light mitochondrial and cytosolic fractions, while the slight increase in the levels of these compounds found after phenobarbital feeding was largely of microsomal origin. 6. The findings suggest that there is an intraperoxisomal CoASH and long-chain acyl-CoA pool. 7. The specific activity of palmitoyl-CoA hydrolase, catalase and peroxisomal palmitoyl-CoA oxidation was increased in the lipid-rich floating layer of the cytosol-fraction. 8. The changes distribution of the peroxisomal marker enzymes and microsomal palmitoyl-CoA hydrolase after treatment with hypolipidemic drugs may be related to the origin of peroxisomes.  相似文献   

9.
On subcellular fractionation, carbonyl reductase (EC 1.1.1.184) activity in guinea pig lung was found in the mitochondrial, microsomal, and cytosolic fractions; the specific activity in the mitochondrial fraction was more than five times higher than those in the microsomal and cytosolic fractions. Further separation of the mitochondrial fraction on a sucrose gradient revealed that about half of the reductase activity is localized in mitochondria and one-third in a peroxidase-rich fraction. Although carbonyl reductase in both the mitochondrial and microsomal fractions was solubilized effectively by mixing with 1% Triton X-100 and 1 M KCl, the enzyme activity in the mitochondrial fraction was more highly enhanced by the solubilization than was that in the microsomal fraction. Carbonyl reductases were purified to homogeneity from the mitochondrial, microsomal, and cytosolic fractions. The three enzymes were almost identical in catalytic, structural, and immunological properties. Carbonyl reductase, synthesized in a rabbit reticulocyte lysate cell-free system, was apparently the same in molecular size as the subunit of the mature enzyme purified from cytosol. These results indicate that the same enzyme species is localized in the three different subcellular compartments of lung.  相似文献   

10.
1. In a previous paper (Biochim. Biophys. Acta (1974) 369, 50-63) the purification of two proteins with lysophospholipase activity (EC 3.1.1.5), provisionally denoted lysophospholipase I and lysophospholipase II, has been described. The subcellular localization of both enzymes was investigated by cell fractionation studies. 2. For each subcellular fraction the total lysophospholipase activity, after solubilization by n-butanol treatment, was separated into a lysophospholipase I and II contribution by DEAE-Sephadex ion exchange chromatography. 3. Lysophospholipase I was found to be a soluble enzyme with a bimodal distribution. Highest relative specific activities were measured in the mitochondrial and the cytoplasmic fraction. Evidence is presented indicating that this enzyme is present in the mitochondrial matrix fraction. 4. Lysophospholipase II appeared to be a membrane-bound enzyme with highest relative specific activity in the microsomal fraction.  相似文献   

11.
Rat liver peroxisomes contain in their matrix the alpha-subunit of the mitochondrial F1-ATPase complex. The identification of this protein in liver peroxisomes has been achieved by immunoelectron microscopy and subcellular fractionation. No beta-subunit of the mitochondrial F1-ATPase complex was detected in the peroxisomal fractions obtained in sucrose gradients or in Nycodenz pelletted peroxisomes. The consensus peroxisomal targeting sequence (Ala-Lys-Leu) is found at the carboxy terminus of the mature alpha-subunit from bovine heart and rat liver mitochondria. Due to the dual subcellular localization of the alpha-subunit and to the structural homologies that exist between this protein and molecular chaperones [(1990) Biol. Chem. 265, 7713-7716] it is suggested that the protein should perform another functional role(s) in both organelles, plus to its characteristic involvement in the regulation of mitochondrial ATPase activity.  相似文献   

12.
The rat CNS contains high levels of tyrosine-specific protein kinases that specifically phosphorylate the tyrosine-containing synthetic peptide poly(Glu80,Tyr20). The phosphorylation of this peptide is rapid and occurs with normal Michaelis-Menten kinetics. Using this peptide to assay for enzyme activity, we have measured the protein tyrosine kinase activity in homogenates from various regions of rat CNS. A marked regional distribution pattern was observed, with high activity present in cerebellum, hippocampus, olfactory bulb, and pyriform cortex, and low activity in the pons/medulla and spinal cord. The distribution of protein tyrosine kinase activity was examined in various subcellular fractions of rat forebrain. The majority of the activity was associated with the particulate fractions, with enrichment in the crude microsomal (P3) and crude synaptic vesicle (LP2) fractions. Moreover, the subcellular distribution of pp60csrc, a well-characterized protein tyrosine kinase, was examined by immunoblot analysis using an affinity-purified antibody specific for pp60csrc. The subcellular distribution of pp60csrc paralleled the overall protein tyrosine kinase activity. In addition, using an antibody specific for phosphotyrosine, endogenous substrates for protein tyrosine kinases were demonstrated on immunoblots of homogenates from the various regions and the subcellular fractions. The immunoblots revealed numerous phosphotyrosine-containing proteins that were present in many of the CNS regions examined and were associated with specific subcellular fractions. The differences in tyrosine-specific protein kinase activity, and in phosphotyrosine-containing proteins, observed in various regional areas and subcellular fractions may reflect specific functional roles for protein tyrosine kinase activity in mammalian brain.  相似文献   

13.
Intracellular localization of serine, cysteine and aspartate proteases, as well as their protein inhibitors, in bombyx grain in the postdiapause period of embryogenesis has been studied. Proteolytic activity of aspartate and cysteine proteases was found in lysosomal, mitochondrial, and nuclear fractions of grains. Serine protease activity was not observed in subcellular fractions of grains of the fourth day of postdiapause development. It has been shown that activities of protein inhibitors and certain peptide hydrolases in subcellular fractions provide consistent functioning and fine regulation of the proteolytic enzyme complex.  相似文献   

14.
Whether 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid (THCA) was converted into cholic acid in human skin fibroblasts was examined. THCA was incubated with subcellular fractions of cultured skin fibroblasts in the presence of NAD+, ATP, CoA, and Mg2+. The reaction products were analyzed by thin-layer chromatography and high-performance liquid chromatography after p-bromophenacyl ester derivatization. The highest specific activity was found in the light mitochondrial fraction (2.71 nmol/mg protein/h). The specific activity was about 9-fold higher than that in heavy mitochondrial fraction. The peroxisomal fraction prepared from the light mitochondrial fraction by sucrose gradient centrifugation was also able to catalyze the conversion of THCA into cholic acid. The specific activity in this fraction was a further 2.2-fold higher than that in the light mitochondrial fraction. These results suggest that cultured human skin fibroblasts are able to convert THCA into cholic acid, and that the activity exists in peroxisomes.  相似文献   

15.
The subcellular distribution of l-glutamate dehydrogenase (GDH, EC 1.4.1.3.) was studied in SB3 soybean (Glycine max) cells using subcellular fractionation techniques. Compounds that inhibit protein synthesis either on 80s or 70s ribosomes were also used to give a preliminary idea of which subcellular fraction is involved in GDH synthesis. It was found that whereas cycloheximide and puromycin considerably reduced the total amount of protein synthesized by the cells, they did not appear to inhibit the synthesis of GDH. In the presence of chloramphenicol, both GDH activity and protein level in the cells were considerably reduced, suggesting that this enzyme was synthesized in organelles and not in the cytosol. Streptomycin, which inhibits plastid protein synthesis, also inhibited synthesis of GDH, indicating that a fraction of GDH activity was plastidial in origin. This is supported by the data on subcellular distribution of the enzyme, which showed that a major fraction of GDH is found in the plastidial fraction, although some activity is found associated with the mitochondrial fraction also. Since a major fraction of GDH activity was found in the plastidial fraction, we studied protein synthesis using isolated plastids and 35S-methionine. Using antibodies raised against purified GDH, we identified a 35S-labeled 41-kilodalton polypeptide synthesized by plastids as GDH.  相似文献   

16.
1. GPAT (glycerol phosphate acyltransferase) and DHAPAT (dihydroxyacetone phosphate acyltransferase) activities were measured both in subcellular fractions prepared from fed rat liver and in whole homogenates prepared from freeze-stopped pieces of liver. 2. GPAT activity in mitochondria differed from the microsomal activity in that it was insensitive to N-ethylmaleimide, had a higher affinity towards the palmitoyl-CoA substrate and showed a different response to changes in hormonal and dietary status. 3. Starvation (48 h) significantly decreased mitochondrial GPAT activity. The ratio of mitochondrial to microsomal activities was also significantly decreased. The microsomal activity was unaffected by starvation, except after adrenalectomy, when it was significantly decreased. Mitochondrial GPAT activity was decreased by adrenalectomy in both fed and starved animals. 4. Acute administration of anti-insulin serum significantly decreased mitochondrial GPAT activity after 60 min without affecting the microsomal activity. 5. A new assay is described for DHAPAT. The subcellular distribution of this enzyme differed from that of GPAT. The highest specific activity of DHAPAT was found in a 23 000 gav. pellet obtained by centrifugation of a post-mitochondrial supernatant. This fraction also contained the highest specific activity of the peroxisomal marker uricase. DHAPAT activity in mitochondrial fractions or in the 23 000 gav. pellet was stimulated by N-ethylmaleimide, whereas that in microsomal fractions was slightly inhibited by this reagent. The GPAT and DHAPAT activities in mitochondrial fractions had a considerably higher affinity for the palmitoyl-CoA substrate. 6. Total liver DHAPAT activity was significantly decreased by starvation (48 h), but was unaffected by administration of anti-insulin serum. 7. The specific activities of GPAT and DHAPAT were lower in non-parenchymal cells compared with parenchymal cells, but the GPAT/DHAPAT ratio was 5--6-fold higher in the parenchymal cells.  相似文献   

17.
delta-Aminolevulinate synthase, the first enzyme in the heme biosynthetic pathway, is encoded by the nuclear gene HEM1. The enzyme is synthesized as a precursor in the cytoplasm and imported into the matrix of the mitochondria, where it is processed to its mature form. Fusions of beta-galactosidase to various lengths of amino-terminal fragments of delta-aminolevulinate synthase were constructed and transformed into yeast cells. The subcellular location of the fusion proteins was determined by organelle fractionation. Fusion proteins were found to be associated with the mitochondria. Protease protection experiments involving the use of intact mitochondria or mitoplasts localized the fusion proteins to the mitochondrial matrix. This observation was confirmed by fractionation of the mitochondrial compartments and specific activity measurements of beta-galactosidase activity. The shortest fusion protein contains nine amino acid residues of delta-aminolevulinate synthase, indicating that nine amino-terminal residues are sufficient to localize beta-galactosidase to the mitochondrial matrix. The amino acid sequence deduced from the DNA sequence of HEM1 showed that the amino-terminal region of delta-aminolevulinate synthase was largely hydrophobic, with a few basic residues interspersed.  相似文献   

18.
The tissue distribution and subcellular location of branched chain aminotransferase was analyzed using polyclonal antibodies against the enzyme purified from rat heart mitochondria (BCATm). Immunoreactive proteins were visualized by immunoblotting. The antiserum recognized a 41-kDa protein in the 100,000 x g supernatant from a rat heart mitochondrial sonicate. The 41-kDa protein was always present in mitochondria which contained branched chain aminotransferase activity, skeletal muscle, kidney, stomach, and brain, but not in cytosolic fractions. In liver mitochondria, which have very low levels of branched chain aminotransferase activity, the 41-kDa protein was not present. However, two immunoreactive proteins of slightly higher molecular masses were identified. These proteins were located in hepatocytes. The 41-kDa protein was present in fetal liver mitochondria but not in liver mitochondria from 5-day neonates. Thus disappearance of the 41-kDa protein coincided with the developmental decline in liver branched chain aminotransferase activity. Two-dimensional immunoblots of isolated BCATm immunocomplexes showed that the liver immunoreactive proteins were clearly different from the heart and kidney proteins which exhibited identical immunoblots. Investigation of BCATm in subcellular fractions prepared from different skeletal muscle fiber types revealed that branched chain aminotransferase is exclusively a mitochondrial enzyme in skeletal muscles. Although total detergent-extractable branched chain aminotransferase activity was largely independent of fiber type, branched chain aminotransferase activity and BCATm protein concentration were highest in mitochondria prepared from white gastrocnemius followed by mixed skeletal muscles with lowest activity and protein concentration found in soleus mitochondria. These quantitative differences in mitochondrial branched chain aminotransferase activity and enzyme protein content suggest there may be differential expression of BCATm in different muscle fiber types.  相似文献   

19.
Mutations found in PTEN-induced putative kinase 1 (PINK1), a putative mitochondrial serine/threonine kinase of unknown function, have been linked to autosomal recessive Parkinson's disease. It is suggested that mutations can cause a loss of PINK1 kinase activity and eventually lead to mitochondrial dysfunction. In this report, we examined the subcellular localization of PINK1 and the dynamic kinetics of PINK1 processing and degradation. We also identified cytosolic chaperone heat-shock protein 90 (Hsp90) as an interacting protein of PINK1 by PINK1 co-immunoprecipitation. Immunofluorescence of PINK1 protein and mitochondrial isolation show that the precursor form of PINK1 translocates to the mitochondria and is processed into two cleaved forms of PINK1, which in turn localize more to the cytosolic than mitochondrial fraction. The cleavage does not occur and the uncleaved precursor stays associated with the mitochondria when the mitochondrial membrane potential is disrupted. Metabolic labeling analyses show that the PINK1 processing is rapid and the levels of cleaved forms are tightly regulated. Furthermore, cleaved forms of PINK1 are stabilized by Hsp90 interaction as the loss of Hsp90 activity decreases PINK1 level after mitochondrial processing. Lastly, we also find that cleaved forms of PINK1 are degraded by the proteasome, which is uncommon for mitochondrial proteins. Our findings support a dual subcellular localization, implying that PINK1 can reside in the mitochondria and the cytosol. This raises intriguing functional roles that bridge these two cellular compartments.  相似文献   

20.
Rat liver cytosol contained an activity that stimulated the import of wheat germ lysate-synthesized precursor proteins into mitochondria. The activity was purified 10,000-fold from the cytosol as a homogeneous heterodimeric protein. This protein (termed mitochondrial import stimulation factor or MSF) stimulated the binding and import of mitochondrial precursor proteins. MSF was also found to recognize the presequence portion of mitochondrial precursors and catalyze the depolymerization and unfolding of in vitro synthesized mitochondrial precursor proteins in an ATP-dependent manner; in this connection, MSF exhibited ATPase activity depending on the important-incompetent mitochondrial precursor protein. The mitochondrial binding and import-stimulating activities were strongly inhibited by the pretreatment of MSF with NEM, whereas the ATP-dependent depolymerization activity was insensitive to the NEM treatment, suggesting that the process subsequent to the unfolding was inhibited with the NEM treatment. We conclude that MSF is a multifunctional cytoplasmic chaperone specific for mitochondrial protein import.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号