首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial DNA (mtDNA) samples of 70 Native Americans, most of whom had been found not to belong to any of the four common Native American haplogroups (A, B, C, and D), were analyzed for the presence of Dde I site losses at np 1715 and np 10394. These two mutations are characteristic of haplogroup X which might be of European origin. The first hypervariable segment (HVSI) of the non-coding control region (CR) of mtDNA of a representative selection of samples exhibiting these mutations was sequenced to confirm their assignment to haplogroup X. Thirty-two of the samples exhibited the restriction site losses characteristic of haplogroup X and, when sequenced, a representative selection (n = 11) of these exhibited the CR mutations commonly associated with haplogroup X, C --> T transitions at np 16278 and 16223, in addition to as many as three other HVSI mutations. The wide distribution of this haplogroup throughout North America, and its prehistoric presence there, are consistent with its being a fifth founding haplogroup exhibited by about 3% of modern Native Americans. Its markedly nonrandom distribution with high frequency in certain regions, as for the other four major mtDNA haplogroups, should facilitate establishing ancestor/descendant relationships between modern and prehistoric groups of Native Americans. The low frequency of haplogroups other than A, B, C, D, and X among the samples studied suggests a paucity of both recent non-Native American maternal admixture in alleged fullblood Native Americans and mutations at the restriction sites that characterize the five haplogroups as well as the absence of additional (undiscovered) founding haplogroups.  相似文献   

2.
Numerous studies of variation in mtDNA in Amerindian populations established that four haplogroups are present throughout both North and South America. These four haplogroups (A, B, C, and D) and perhaps a fifth (X) in North America are postulated to be present in the initial founding migration to the Americas. Furthermore, studies of ancient mtDNA in North America suggested long-term regional continuity of the frequencies of these founding haplogroups. Present-day tribal groups possess high frequencies of private mtDNA haplotypes (variants within the major haplogroups), consistent with early establishment of local isolation of regional populations. Clearly these patterns have implications for the mode of colonization of the hemisphere. Recently, the earlier consensus among archaeologists for an initial colonization by Clovis hunters arriving through an ice-free corridor and expanding in a "blitzkrieg " wave was shown to be inconsistent with extensive genetic variability in Native Americans; a coastal migration route avoids this problem. The present paper demonstrates through a computer simulation model how colonization along coasts and rivers could have rapidly spread the founding lineages widely through North America.  相似文献   

3.
This study examines the mtDNA diversity of the proposed descendants of the multiethnic Hohokam and Anasazi cultural traditions, as well as Uto-Aztecan and Southern-Athapaskan groups, to investigate hypothesized migrations associated with the Southwest region. The mtDNA haplogroups of 117 Native Americans from southwestern North America were determined. The hypervariable segment I (HVSI) portion of the control region of 53 of these individuals was sequenced, and the within-haplogroup diversity of 18 Native American populations from North, Central, and South America was analyzed. Within North America, populations in the West contain higher amounts of diversity than in other regions, probably due to a population expansion and high levels of gene flow among subpopulations in this region throughout prehistory. The distribution of haplogroups in the Southwest is structured more by archaeological tradition than by language. Yumans and Pimans exhibit substantially greater genetic diversity than the Jemez and Zuni, probably due to admixture and genetic isolation, respectively. We find no evidence of a movement of mtDNA lineages northward into the Southwest from Central Mexico, which, in combination with evidence from nuclear markers, suggests that the spread of Uto-Aztecan was facilitated by predominantly male migration. Southern Athapaskans probably experienced a bottleneck followed by extensive admixture during the migration to their current homeland in the Southwest.  相似文献   

4.
Haplogroup X represents approximately 3% of all modern Native North American mitochondrial lineages. Using RFLP and hypervariable segment I (HVSI) sequence analyses, we identified a prehistoric individual radiocarbon dated to 1,340 +/- 40 years BP that is a member of haplogroup X, found near the Columbia River in Vantage, Washington. The presence of haplogroup X in prehistoric North America, along with recent findings of haplogroup X in southern Siberians, confirms the hypothesis that haplogroup X is a founding lineage.  相似文献   

5.
The genetic variability of a Quechua-speaking Andean population from Peru was examined on the basis of four Y chromosome markers and restriction sites that define the Amerindian mitochondrial DNA (mtDNA) haplogroups. Forty-nine out of 52 (90.4%) individuals had mtDNA which belonged to one of the four common Amerindian haplogroups, with 54% of the samples belonging to haplogroup B. Among 25 males, 12 had an Amerindian Y chromosome, which exists as four haplotypes defined on the basis of the DYS287, DYS199, DYS392 and DYS19 markers, three of which are shared by Amazonian Amerindians. Thus, there is a clear directionality of marriages, with an estimated genetic admixture with non-Amerindians that is 9 times lower for mtDNA than for Y chromosome DNA. The comparison of mtDNA of Andean Amerindians with that of people from other regions of South America in a total of 1,086 individuals demonstrates a geographical pattern, with a decreasing frequency of A and C haplotypes and increasing frequency of the D haplotype from the north of the Amazon River to the south of the Amazon River, reaching the lowest and the highest frequencies, respectively, in the more southern populations of Chile and Argentina. Conversely, the highest and lowest frequencies of the haplogroup B are found, respectively, in the Andean and the North Amazon regions, and it is absent from some southern populations, suggesting that haplotypes A, C and D, and haplotype B may have been dispersed by two different migratory routes within the continent.  相似文献   

6.
We examined the genetic population structure of chum salmon, Oncorhynchus keta, in the Pacific Rim using mitochondrial (mt) DNA analysis. Nucleotide sequence analysis of about 500 bp in the variable portion of the 5′ end of the mtDNA control region revealed 20 variable nucleotide sites, which defined 30 haplotypes of three genealogical clades (A, B, and C), in more than 2,100 individuals of 48 populations from Japan (16), Korea (1), Russia (10), and North America (21 from Alaska, British Columbia, and Washington). The observed haplotypes were mostly associated with geographic regions, in that clade A and C haplotypes characterized Asian populations and clade B haplotypes distinguished North American populations. The haplotype diversity was highest in the Japanese populations, suggesting a greater genetic variation in the populations of Japan than those of Russia and North America. The analysis of molecular variance and contingency χ2 tests demonstrated strong structuring among the three geographic groups of populations and weak to moderate structuring within Japanese and North American populations. These results suggest that the observed geographic pattern might be influenced primarily by historic expansions or colonizations and secondarily by low or restricted gene flow between local groups within regions. In addition to the analysis of population structure, mtDNA data may be useful for constructing a baseline for stock identification of mixed populations of high seas chum salmon.  相似文献   

7.
The mitochondrial DNA (mtDNA) haplogroups of 54 full-blooded modern and 64 ancient Native Americans from northwestern North America were determined. The control regions of 10 modern and 30 ancient individuals were sequenced and compared. Within the Northwest, the frequency distribution for haplogroup A is geographically structured, with haplogroup A decreasing with distance from the Pacific Coast. The haplogroup A distribution suggests that a prehistoric population intrusion from the subarctic and coastal region occurred on the Columbia Plateau in prehistoric times. Overall, the mtDNA pattern in the Northwest suggests significant amounts of gene flow among Northwest Coast, Columbia Plateau, and Great Basin populations.  相似文献   

8.
Quaternary climatic oscillations greatly influenced the present-day population genetic structure of animals and plants. For species with high dispersal and reproductive potential, phylogeographic patterns resulting from historical processes can be cryptic, overshadowed by contemporary processes. Here we report a study of the phylogeography of Odocoileus hemionus , a large, vagile ungulate common throughout western North America. We examined sequence variation of mitochondrial DNA (control region and cytochrome b ) within and among 70 natural populations across the entire range of the species. Among the 1766 individual animals surveyed, we recovered 496 haplotypes. Although fine-scale phylogenetic structure was weakly resolved using phylogenetic methods, network analysis clearly revealed the presence of 12 distinct haplogroups. The spatial distribution of haplogroups showed a strong genetic discontinuity between the two morphological types of O. hemionus , mule deer and black-tailed deer, east and west of the Cascade Mountains in the Pacific Northwest. Within the mule deer lineage, we identified several haplogroups that expanded before or during the Last Glacial Maximum, suggesting that mule deer persisted in multiple refugia south of the ice sheets. Patterns of genetic diversity within the black-tailed deer lineage suggest a single refugium along the Pacific Northwest coast, and refute the hypothesis that black-tailed deer persisted in one or more northern refugia. Our data suggest that black-tailed deer recolonized areas in accordance with the pattern of glacial retreat, with initial recolonization northward along a coastal route and secondary recolonization inland.  相似文献   

9.
In this study, 231 Y chromosomes from 12 populations were typed for four diagnostic single nucleotide polymorphisms (SNPs) to determine haplogroup membership and 43 Y chromosomes from three of these populations were typed for eight short tandem repeats (STRs) to determine haplotypes. These data were combined with previously published data, amounting to 724 Y chromosomes from 26 populations in North America, and analyzed to investigate the geographic distribution of Y chromosomes among native North Americans and to test the Southern Athapaskan migration hypothesis. The results suggest that European admixture has significantly altered the distribution of Y chromosomes in North America and because of this caution should be taken when inferring prehistoric population events in North America using Y chromosome data alone. However, consistent with studies of other genetic systems, we are still able to identify close relationships among Y chromosomes in Athapaskans from the Subarctic and the Southwest, suggesting that a small number of proto-Apachean migrants from the Subarctic founded the Southwest Athapaskan populations.  相似文献   

10.
Contemporary distribution of North American species has been shaped by past glaciation events during the Quaternary period. However, their effects were not as severe in the southern Rocky Mountains and Northern Mexico as elsewhere in North America. In this context, we test hypotheses about the historical demography of Dendroctonus pseudotsugae, based on 136 haplotypes of mitochondrial cytochrome oxidase I. The phylogenetic analysis yielded four haplogroups corresponding to northwestern United States and southwestern Canada (NUS), southwestern United States (Arizona, SUS), northwestern Mexico (Sierra Madre Occidental, SMOC), and northeastern Mexico (Sierra Madre Oriental, SMOR). Predictions of demographic expansion were examined through neutrality tests against population growth and mismatch distribution. Results showed that the NUS and SMOC haplogroups have experienced demographic expansion events, whereas the SUS and SMOR haplogroups have not. Divergence times between pairs of haplogroups were estimated from early to middle Pleistocene. The longer divergence time between NUS and all other haplogroups could be the result of refugia within the Pacific Northwest and northern Rocky Mountains and long-term isolation from southernmost populations in Mexico. The results obtained in this study are in agreement with the evolutionary history of the host Douglas-fir, as the warmer climates of interglacial periods pushed conifers northward of Colorado, New Mexico, and Arizona, whereas environmental changes reduced the population size of Douglas-fir and forced fragmentation of distribution range southward into northern Mexico.  相似文献   

11.
Mitochondrial DNA (mtDNA) was extracted and analyzed from the skeletal remains of 44 individuals, representing four prehistoric populations, and compared to that from two other prehistoric and several contemporary Native American populations to investigate biological relationships and demographic history in northeastern North America. The mtDNA haplogroup frequencies of ancient human remains from the Morse (Red Ocher tradition, 2,700 BP) and Orendorf (Mississippian tradition, 800 BP) sites from the Central Illinois River Valley, and the Great Western Park (Western Basin tradition, 800 BP) and Glacial Kame (2,900 BP) populations from southwestern Ontario, change over time while maintaining a regional continuity between localities. Haplotype patterns suggest that some ancestors of present day Native Americans in northeastern North America have been in that region for at least 3,000 years but have experienced extensive gene flow throughout time, resulting, at least in part, from a demic expansion of ancestors of modern Algonquian-speaking people. However, genetic drift has also been a significant force, and together with a major population crash after European contact, has altered haplogroup frequencies and caused the loss of many haplotypes.  相似文献   

12.
Previous studies have investigated the human population history of eastern North America by examining mitochondrial DNA (mtDNA) variation among Native Americans, but these studies could only reconstruct maternal population history. To evaluate similarities and differences in the maternal and paternal population histories of this region, we obtained DNA samples from 605 individuals, representing 16 indigenous populations. After amplifying the amelogenin locus to identify males, we genotyped 8 binary polymorphisms and 10 microsatellites in the male-specific region of the Y chromosome. This analysis identified 6 haplogroups and 175 haplotypes. We found that sociocultural factors have played a more important role than language or geography in shaping the patterns of Y chromosome variation in eastern North America. Comparisons with previous mtDNA studies of the same samples demonstrate that male and female demographic histories differ substantially in this region. Postmarital residence patterns have strongly influenced genetic structure, with patrilocal and matrilocal populations showing different patterns of male and female gene flow. European contact also had a significant but sex-specific impact due to a high level of male-mediated European admixture. Finally, this study addresses long-standing questions about the history of Iroquoian populations by suggesting that the ancestral Iroquoian population lived in southeastern North America.  相似文献   

13.
MtDNA and Y-chromosome lineages in the Yakut population   总被引:1,自引:0,他引:1  
The structure of female (mtDNA) and male (Y-chromosome haplotypes) lineages in the Yakut population was examined. To determine mtDNA haplotypes, sequencing of hypervariable segment I and typing of haplotype-specific point substitutions in the other parts of the mtDNA molecule were performed. Y haplogroups were identified through typing of biallelic polymorphisms in the nonrecombining part of the chromosome. Haplotypes within haplogroups were analyzed with seven microsatellite loci. Mitochondrial gene pool of Yakuts is mainly represented by the lineages of eastern Eurasian origin (haplogroups A, B, C, D, G, and F). In Yakuts haplogroups C and D showing the total frequency of almost 80% and consisting of 12 and 10 different haplopypes, respectively, were the most frequent and diverse. The total part of the lineages of western Eurasian origin ("Caucasoid") was about 6% (4 haplotypes, haplogroups H, J, and U). Most of Y chromosomes in the Yakut population (87%) belonged to haplogroup N3 (HG16), delineated by the T-C substitution at the Tat locus. Chromosomes of haplogroup N3 displayed the presence of 19 microsatellite haplotypes, the most frequent of which encompassed 54% chromosomes of this haplogroup. Median network of haplogroup N3 in Yakuts demonstrated distinct "starlike phylogeny". Male lineages of Yakuts were shown to be closest to those of Eastern Evenks.  相似文献   

14.
Only a limited number of complete mitochondrial genome sequences belonging to Native American haplogroups were available until recently, which left America as the continent with the least amount of information about sequence variation of entire mitochondrial DNAs. In this study, a comprehensive overview of all available complete mitochondrial DNA (mtDNA) genomes of the four pan-American haplogroups A2, B2, C1, and D1 is provided by revising the information scattered throughout GenBank and the literature, and adding 14 novel mtDNA sequences. The phylogenies of haplogroups A2, B2, C1, and D1 reveal a large number of sub-haplogroups but suggest that the ancestral Beringian population(s) contributed only six (successful) founder haplotypes to these haplogroups. The derived clades are overall starlike with coalescence times ranging from 18,000 to 21,000 years (with one exception) using the conventional calibration. The average of about 19,000 years somewhat contrasts with the corresponding lower age of about 13,500 years that was recently proposed by employing a different calibration and estimation approach. Our estimate indicates a human entry and spread of the pan-American haplogroups into the Americas right after the peak of the Last Glacial Maximum and comfortably agrees with the undisputed ages of the earliest Paleoindians in South America. In addition, the phylogenetic approach also indicates that the pathogenic status proposed for various mtDNA mutations, which actually define branches of Native American haplogroups, was based on insufficient grounds.  相似文献   

15.
Phylogeographic trends in Batrachospermum macrosporum Mont. were investigated using the mitochondrial intergenic spacer between the cytochrome oxidase subunit 2 and 3 genes (cox2‐3). A total of 11 stream segments were sampled with seven in the coastal plain of North America and four in tropical areas of South America. Fifteen thalli were sampled from seven streams, 14 thalli from two streams, and eight thalli from two streams. There were 16 haplotypes detected using 149 individuals. Of the eight haplotypes from locations in North America, all were 334 base pairs (bp) in length, and of those from South America, five were 344 bp, and three were 348 bp. Two individual networks were produced: one for the haplotypes from North America and another for those from South America, and these could not be joined due to the large number of base pair differences. This split between haplotypes from North and South America was confirmed with sequence data of the rbcL gene. There was very little genetic variation among the haplotypes from the North American locations, leading us to hypothesize that these are fairly recent colonization events along the coastal plain. In contrast, there was high variation among haplotypes from South America, and it would appear that the Amazon serves as a center of diversity. We detected considerable variation in haplotypes among streams, but frequently, a single haplotype in an individual stream segment, which is consistent with data from previous studies of other batrachospermalean taxa, may suggest a single colonization event per stream.  相似文献   

16.
Mitochondrial DNA lineage frequencies in prehistoric Aleut, eastern Utah Fremont, Southwestern Anasazi, Pyramid Lake, and Stillwater Marsh skeletal samples from northwest Nevada and the Oneota of western Illinois are compared with those in 41 contemporary aboriginal populations of North America. The ancient samples range in age from 300 years to over 6,000 years. The results indicate that the prehistoric inhabitants of North America exhibit the same level of mtDNA variability as contemporary populations of the continent. Variation in modern mtDNA haplogroup frequencies is highly geographically structured, and the prehistoric samples exhibit the same geographic pattern of variation. This indicates that differentiation of regional patterns of mtDNA lineage variation occurred early in North American prehistory (much more than 2,000 years B.P.), has remained relatively stable since its origin, and was little influenced by the disruptions hypothesized for other genetic systems as a result of population declines and relocations at contact.  相似文献   

17.
Analysis of mtDNA markers in a population of the Nogays (n = 206), the people inhabiting the North Caucasus and speaking a Turkic language of the Altaic linguistic family, has revealed a high level of genetic diversity (H = 0.99). The identified haplotypes include all major West Eurasian haplogroups, with the prevalence of H and U clusters (22 and 21%, respectively), but the percentage of lineages specific for East Eurasian populations is the highest (40%). Some other mtDNA variants in the Nogay population belong to the M1 haplogroups typical of northeastern Africa and U2 characteristic of Indian populations. Thus, components of different origin have contributed to the gene pool of Nogays. An erratum to this article is available at .  相似文献   

18.
本研究基于75个Y-SNP位点和23个Y-STR基因座对山东汉、回族男性人群进行研究,旨在揭示两个人群的父系遗传结构,为法医学应用及群体遗传学等提供基础数据。研究基于微测序技术检测187份山东汉族和130份山东回族样本,获取75个Y-SNP位点分型;采用PowerPlex®Y23试剂盒检测23个Y-STR基因座;采用直接计数法统计等位基因频率、单倍型频率及单倍群频率,根据公式D=n(1-∑pi2)/(n-1)计算基因多样性、单倍型多样性以及单倍群多样性;根据Median-joining方法,使用NETWORK 5.0和NETWORK Publisher构建并展示网络图。研究结果显示,单倍群O-M175、C-M130、N-M231、Q-M242为山东汉族男性人群主要的Y单倍群,单倍群O-M175、J-M304、R-M207、C-M130、N-M231为山东回族男性人群最主要的单倍群;23个Y-STR基因座在山东汉族男性样本中检出187种单倍型,单倍型多样性为1.0000,在山东回族中检出121种单倍型,单倍型多样性为0.9988;网络图显示同一Y单倍群的样本相对独立地聚集在一起,山东汉族与回族人群之间存在共享单倍群,同时也存在一些特异性单倍群,如单倍群J-M304、R-M207均以山东回族为主,单倍群Q-M242则以山东汉族为主。山东汉族和回族男性人群的主要单倍群均为单倍群O-M175;单倍群J-M304、R-M207在山东回族中的高频分布,单倍群Q-M242则在山东汉族中高频分布。研究表明山东回族人群中保留有一定比例的欧亚西部和中东特有的Y染色体类型。  相似文献   

19.
To study the mitochondrial gene pool structure in Yakuts, polymorphism of mtDNA hypervariable segment I (16,024-16,390) was analyzed in 191 people sampled from the indigenous population of the Sakha Republic. In total, 67 haplotypes of 14 haplogroups were detected. Most (91.6%) haplotypes belonged to haplogroups A, B, C, D, F, G, M*, and Y, which are specific for East Eurasian ethnic groups; 8.4% haplotypes represented Caucasian haplogroups H, HV1, J, T, U, and W. A high frequency of mtDNA types belonging to Asian supercluster M was peculiar for Yakuts: mtDNA types belonging to haplogroup C, D, or G and undifferentiated mtDNA types of haplogroup M (M*) accounted for 81% of all haplotypes. The highest diversity was observed for haplogroups C and D, which comprised respectively 22 (44%) and 18 (30%) haplotypes. Yakuts showed the lowest genetic diversity (H = 0.964) among all Turkic ethnic groups. Phylogenetic analysis testified to a common genetic substrate of Yakuts, Mongols, and Central Asian (Kazakh, Kyrgyz, Uigur) populations. Yakuts proved to share 21 (55.5%) mtDNA haplogroups with the Central Asian ethnic groups and Mongols. Comparisons with modern paleo-Asian populations (Chukcha, Itelmen, Koryaks) revealed three (8.9%) haplotypes common for Yakuts and Koryaks. The results of mtDNA analysis disagree with the hypothesis of an appreciable paleo-Asian contribution to the modern Yakut gene pool.  相似文献   

20.
The genetic composition of the Russian population was investigated by analyzing both mitochondrial DNA (mtDNA) and Y-chromosome loci polymorphisms that allow for the different components of a population gene pool to be studied, depending on the mode of DNA marker inheritance. mtDNA sequence variation was examined by using hypervariable segment I (HVSI) sequencing and restriction analysis of the haplogroup-specific sites in 325 individuals representing 5 Russian populations from the European part of Russia. The Y-chromosome variation was investigated in 338 individuals from 8 Russian populations (including 5 populations analyzed for mtDNA variation) using 12 binary markers. For both uniparental systems most of the observed haplogroups fell into major West Eurasian haplogroups (97.9% and 99.7% for mtDNA and Y-chromosome haplogroups, respectively). Multidimensional scaling analysis based on pairwise F(ST) values between mtDNA HVSI sequences in Russians compared to other European populations revealed a considerable heterogeneity of Russian populations; populations from the southern and western parts of Russia are separated from eastern and northern populations. Meanwhile, the multidimensional scaling analysis based on Y-chromosome haplogroup F(ST) values demonstrates that the Russian gene pool is close to central-eastern European populations, with a much higher similarity to the Baltic and Finno-Ugric male pools from northern European Russia. This discrepancy in the depth of penetration of mtDNA and Y-chromosome lineages characteristic for the most southwestern Russian populations into the east and north of eastern Europe appears to indicate that Russian colonization of the northeastern territories might have been accomplished mainly by males rather than by females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号