首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New synthetic mercaptotripeptides (HS-CH2-CH2-CO-Pro-Yaa) which inhibit Achromobacter iophagus collagenase were produced in order to obtain more powerful bacterial collagenase inhibitors than currently available, and to investigate the specificity of the S3' subsite of the enzyme. Since similar binding constants were found for inhibitors carrying uncharged residues of various sizes in the P3' position (Yaa = Ala, Leu, Phe, Pro, Hyp) steric hindrance at the collagenase S3' appears relatively limited. The compound (HS-CH2-CH2-CO-Pro-Arg), which carries an arginine residue in the position P3' and had the highest inhibition constant of the series tested (Ki = 0.5 microM), proved to be the strongest inhibitor so far reported in the literature. The weakest in the present series was the compound (HS-CH2-CH2-CO-Pro-Asp) which carries an aspartic residue in position P3' and had a Ki = 70 microM. The present work revealed that the charged groups in the P3' position play a key role in the interaction of the inhibitors with the enzyme.  相似文献   

2.
A new series of thio ester, depsipeptide, and peptide substrates have been synthesized for the bacterial enzyme Clostridium histolyticum collagenase. The hydrolysis of the depsipeptide substrate was followed on a pH stat, and thio ester hydrolysis was measured by inclusion of the chromogenic thiol reagent 4,4'-dithiopyridine in the assay mixture. The best thio ester substrate, Boc-Abz-Gly-Pro-Leu-SCH2CO-Pro-Nba, had a kcat/KM of 63 000 M-1 s-1, while several shorter thio ester sequences were inactive as substrates. In general, the peptide analogues of all the reactive thio ester substrates were shown to be hydrolyzed 5-10 times faster by collagenase. In one case (Z-Gly-Pro-Leu-Gly-Pro-NH2) where a comparison was made, the peptide substrate was respectively 8- and 106-fold more readily hydrolyzed than the corresponding thio ester and ester substrates. Cleavages of the two fluorescence-quench substrates Abz-Gly-Pro-Leu-Gly-Pro-Nba and Abz-Gly-Pro-Leu-SCH2CO-Pro-Nba could be easily followed fluorogenically since a 5-10-fold increase in fluorescence occurred upon hydrolysis. The fluorescent peptide substrate is the best synthetic substrate known for C. histolyticum collagenase with a kcat/KM value of 490 000 M-1 s-1. A series of new reversible inhibitors were developed by the attachment of zinc ligating groups (hydroxamic acid, carboxymethyl, and thiol) to various peptide sequences specific for C. histolyticum collagenase. The shorter peptides designed to bind to either the P3-P1 or P1'-P3' subsites were poor to moderate inhibitors. The thiol HSCH2CH2CO-Pro-Nba had the lowest K1 (0.02 mM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A series of hydroxamates was prepared by reaction of alkyl/arylsulfonyl halides with N-2-chlorobenzyl-L-alanine, followed by conversion of the COOH moiety to the CONHOH group, with hydroxylamine in the presence of carbodiimides. Other structurally related compounds were obtained by reaction of N-2-chlorobenzyl-L-alanine with aryl isocyanates, arylsulfonyl isocyanates or benzoyl isothiocyanate, followed by the similar conversion of the COOH into the CONHOH moiety. The new compounds were assayed as inhibitors of the Clostridium histolyticum collagenase, ChC (EC 3.4.24.3), a bacterial zinc metallo-peptidase which degrades triple helical collagen as well as a large number of synthetic peptides. The prepared hydroxamate derivatives proved to be 100-500 times more active collagenase inhibitors than the corresponding carboxylates. Substitution patterns leading to best ChC inhibitors (both for carboxylates as well as for the hydroxamates) were those involving perfluoroalkylsulfonyl- and substituted-arylsulfonyl moieties, such as pentafluorophenylsulfonyl; 3- and 4-protected-aminophenylsulfonyl-; 3- and 4-carboxyphenylsulfonyl-; 3-trifluoromethyl-phenylsulfonyl; as well as 1- and 2-naphthyl-, quinoline-8-yl- or substituted-arylsulfonylamidocarboxyl moieties among others. Similarly to the matrix metalloproteinase (MMP) hydroxamate inhibitors, ChC inhibitors of the type reported here must incorporate hydrophobic moieties at the P2' and P3' sites, in order to achieve tight binding to the enzyme. This study also proves that the 2-chlorobenzyl moiety, investigated here for the first time, is an efficient P2' anchoring moiety for obtaining potent ChC inhibitors.  相似文献   

4.
The molecular basis of the substrate specificity of Clostridium histolyticum beta-collagenase was investigated using a combinatorial method. An immobilized positional peptide library, which contains 24,000 sequences, was constructed with a 7-hydroxycoumarin-4-propanoyl (Cop) fluorescent group attached at the N terminus of each sequence. This immobilized peptide library was incubated with C. histolyticum beta-collagenase, releasing fluorogenic fragments in the solution phase. The relative substrate specificity (k(cat)/K(m)) for each member of the library was determined by measuring fluorescence intensity in the solution phase. Edman sequencing was used to assign structure to subsites of active substrate mixtures. Collectively, the substrate preference for subsites (P(3)-P(4)') of C. histolyticum beta-collagenase was determined. The last position on the C-terminal side in which the identity of the amino acids affects the activity of the enzyme is P(4)', and an aromatic side chain is preferred in this position. The optimal P(1)'-P(3)' extended substrate sequence is P(1)'-Gly/Ala, P(2)'-Pro/Xaa, and P(3)'-Lys/Arg/Pro/Thr/Ser. The Cop group in either the P(2) or P(3) position is required for a high substrate activity with C. histolyticum beta-collagenase. S(2) and S(3) sites of the protease play a dominant role in fixing the substrate specificity. The immobilized peptide library proved to be a powerful approach for assessing the substrate specificity of C. histolyticum beta-collagenase, so it may be applied to the study of other proteases of interest.  相似文献   

5.
L-alanine hydroxamate derivatives were obtained by reaction of alkyl/arylsulfonyl halides with L-alanine, followed by treatment with benzyl chloride, and conversion of the COOH moiety to the CONHOH group with hydroxylamine in the presence of carbodiimides. Other derivatives were obtained by reaction of N-benzyl-alanine with aryl isocyanates, arylsulfonyl isocyanates or benzoyl isothiocyanate, followed by a similar conversion of the COOH to the CONHOH moiety. The obtained compounds were assayed as inhibitors of Clostridium histolyticum collagenase, ChC (EC 3.4.24.3), a zinc enzyme which degrades triple helical collagen. The hydroxamate derivatives were generally 100-500 times more active than the corresponding carboxylates. In the series of synthesized derivatives, substitution patterns leading to the most potent ChC inhibitors were those involving perfluoroalkylsulfonyl- and substituted-arylsulfonyl moieties, such as pentafluorophenylsulfonyl, 3- and 4-protected-aminophenylsulfonyl-, 3- and 4-carboxy-phenylsulfonyl-, 3-trifluoromethyl-phenylsulfonyl-, or 1- and 2-naphthylsulfonyl among others. Similarly to the matrix metalloproteinase (MMP) hydroxamate inhibitors, ChC inhibitors of the type reported here must incorporate hydrophobic moieties at the P(2') and P(3') sites, in order to achieve tight binding to the enzyme.  相似文献   

6.
R E Galardy  D Grobelny 《Biochemistry》1983,22(19):4556-4561
Di- and tripeptides with sequences present in collagen that are known to occupy the S1' through S3' subsites at the active site of the collagenase from Clostridium histolyticum do not themselves inhibit this zinc protease. Thus glycylproline, glycylprolylalanine, and their C-terminal amides are not inhibitors. N alpha-Phosphorylglycylproline, N alpha-phosphorylglycyl-L-prolyl-L-alanine, and their C-terminal amides are weak inhibitors with IC50's (concentration causing half-maximal inhibition) of 4.6, 0.8, 3, and 1.5 mM, respectively. Extension of glycyl-L-prolyl-L-alanine to L-leucyl-glycyl-L-prolyl-L-alanine gives a tetrapeptide known to occupy the S1, S1', S2', and S3' subsites of collagenase when present in collagen but that still does not itself inhibit the enzyme. (Isoamylphosphonyl)glycyl-L-prolyl-L-alanine, a peptide containing a tetrahedral phosphorus atom at the position of the amide carbonyl carbon of the L-leucylglycyl amide bond of the parent tetrapeptide, inhibits collagenase with an IC50 of 16 microM, at least 1000-fold more potent than the parent peptide. Substitution of the two-carbon ethyl chain of alanine for the five-carbon isoamyl chain of leucine increases the IC50 to 46 microM. Substitution of the n-decyl chain for the isoamyl chain does not change the IC50. (Isoamylphosphonyl)glycyl-glycyl-L-proline contains a tripeptide that does not occupy the S1' through S3' subsites of collagenase when this peptide is present in collagen and thus has an IC50 of 4.4 mM. (Isoamylphosphonyl)glycyl-L-prolyl-L-alanine may be an analogue of the tetrahedral transition state for the hydrolysis of the natural collagen substrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Novel matrix metalloproteinase (MMP)/bacterial collagenase inhibitors are reported, considering the sulfonylated amino acid hydroxamates as lead molecules. A series of compounds was prepared by reaction of arylsulfonyl isocyanates with N-(5H-dibenzo[a,d]cyclohepten-5-yl)- and N-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl) methyl glycocolate, respectively, followed by the conversion of the COOMe to the carboxylate/hydroxamate moieties. The corresponding derivatives with methylene and ethylene spacers between the polycyclic moiety and the amino acid functionality were also obtained by related synthetic strategies. These new compounds were assayed as inhibitors of MMP-1, MMP-2, MMP-8 and MMP-9, and of the collagenase isolated from Clostridium histolyticum (ChC). Some of the new derivatives reported here proved to be powerful inhibitors of the four MMPs mentioned above and of ChC, with activities in the low nanomolar range for some of the target enzymes, depending on the substitution pattern at the sulfonylureido moiety and on the length of the spacer through which the dibenzosuberenyl/suberyl group is connected with the rest of the molecule. Several of these inhibitors also showed selectivity for the deep pocket enzymes (MMP-2, MMP-8 and MMP-9) over the shallow pocket ones MMP-1 and ChC.  相似文献   

8.
To define the inhibitory requirements of mammalian collagenase, several N-substituted amide and peptide derivatives of the mercaptomethyl analogue of leucine, 2-[(R,S)mercaptomethyl]-4-methylpentanoic acid (H psi[SCH2]-DL-leucine), were synthesized and tested as inhibitors of pig synovial collagenase with soluble type I collagen as substrate. H psi[SCH2]-DL-leucine (IC50 = 320 microM) was about 10 times more potent than the beta-mercaptomethyl compound, N-acetylcysteine. The amide of H psi[SCH2]-DL-leucine was six times more potent than the parent thiol acid. Aliphatic N-substituted amides were less potent than the unsubstituted amide, whereas the N-benzyl amide was slightly more potent. Dipeptides, particularly those with an aromatic group at P2', were up to 20-fold more potent, while tripeptides with an aromatic L-amino acid at P2' and Ala-NH2 at P3' were up to 2200 times more potent than H psi[SCH2]-DL-leucine. The resolved diastereomers of H psi[SCH2]-DL-Leu-Phe-Ala-NH2 inhibited by 50% at 0.3 and 0.04 microM, respectively. The most potent inhibitor synthesized, an isomer of H psi[SCH2]-DL-Leu-L-3-(2'-naphthyl)alanyl-Ala-NH2, exhibited an IC50 of 0.014 microM, a value about 300 times less than similar thiol-based analogues of the P'-cleavage sequence of type I collagen, H psi[SCH2]-DL-Leu-Ala-Gly-Gln-. These structure-function studies establish within the present series of compounds that the most effective inhibitors of mammalian collagenase are not closely related to the P2'-P3' elements of the cleavage site of the natural substrate but rather have an aromatic group at the P2' position and Ala-NH2 at the P3' position.  相似文献   

9.
Human matrix metalloproteinase 9 (MMP-9), also called gelatinase B, is particularly involved in inflammatory processes, bone remodelling and wound healing, but is also implicated in pathological processes such as rheumatoid arthritis, atherosclerosis, tumour growth, and metastasis. We have prepared the inactive E402Q mutant of the truncated catalytic domain of human MMP-9 and co-crystallized it with active site-directed synthetic inhibitors of different binding types. Here, we present the X-ray structures of five MMP-9 complexes with gelatinase-specific, tight binding inhibitors: a phosphinic acid (AM-409), a pyrimidine-2,4,6-trione (RO-206-0222), two carboxylate (An-1 and MJ-24), and a trifluoromethyl hydroxamic acid inhibitor (MS-560). These compounds bind by making a compromise between optimal coordination of the catalytic zinc, favourable hydrogen bond formation in the active-site cleft, and accommodation of their large hydrophobic P1' groups in the slightly flexible S1' cavity, which exhibits distinct rotational conformations of the Pro421 carbonyl group in each complex. In all these structures, the side-chain of Arg424 located at the bottom of the S1' cavity is not defined in the electron density beyond C(gamma), indicating its mobility. However, we suggest that the mobile Arg424 side-chain partially blocks the S1' cavity, which might explain the weaker binding of most inhibitors with a long P1' side-chain for MMP-9 compared with the closely related MMP-2 (gelatinase A), which exhibits a short threonine side-chain at the equivalent position. These novel structural details should facilitate the design of more selective MMP-9 inhibitors.  相似文献   

10.
Clostridium histolyticum collagenase is used to isolate cells from various organs and tissues for tissue engineering, and also to treat destructive fibrosis; thus, the demand for high-grade enzyme preparations is increasing. In this study, we constructed a plasmid encoding C. histolyticum type II collagenase (ColH) with a C-terminal hexahistidine tag (ColH-his) to facilitate the purification of the enzyme through immobilized metal affinity chromatography (IMAC). When ColH-his was expressed in a protease-deficient mutant of Clostridium perfringens, it was produced in the culture supernatant more efficiently than the untagged ColH. ColH-his exhibited the same hydrolytic activity as ColH against 4-phenylazobenzyloxy-carbonyl-Pro-Leu-Gly-Pro-D: -Arg (Pz peptide), a synthetic collagenase substrate. From 100 ml of the culture supernatant, approximately 1 mg of ColH-his was purified by ammonium sulfate precipitation, IMAC, and high-performance liquid chromatography on a MonoQ column. When IMAC was performed on chelating Sepharose charged with Zn(2+) instead of Ni(2+), a potential carcinogenic metal, the specific activities against Pz peptide and type I collagen decreased slightly. However, they were comparable to those reported for other recombinant ColHs and a commercial C. histolyticum collagenase preparation, suggesting that this expression system is useful for large-scale preparation of high-grade clostridial collagenases.  相似文献   

11.
Several phosphonamide peptides having the general structure R-PO(OH)-Xaa-Yaa-Zaa were synthesized and tested for inhibition of Clostridium histolyticum collagenase. Inhibition was found to depend on the nature of R, Xaa, Yaa and Zaa such that the maximal affinity (Ki = 5 nM) was observed when R = p-nitrophenylethyl, Xaa = Gly, Yaa = Pro and Zaa = 2-aminohexanoic acid; this represents the tightest binding of inhibitor reported to date for any bacterial collagenase. Substitution of the p-nitrophenylethyl by a methyl group led to a 500-fold decrease of the potency, highlighting the existence of optimal interaction between the nitrophenylethyl side chain and one subsite of the enzyme. Replacement of the NH group in glycine residue (Xaa position) by -O- or -N-CH3 produces significantly less potent inhibitors, presumably due in part to the loss of a hydrogen bond between the inhibitor and collagenase active site. These phosphonamidates are thought to be acting as transition-state analogues of the peptide substrate.  相似文献   

12.
D Grobelny  R E Galardy 《Biochemistry》1985,24(22):6145-6152
The collagenase from Clostridium histolyticum is a mixture of several collagenases, all of which are zinc metalloproteases. This enzyme catalyzes the cleavage of the X-Gly peptide bond in the repeating sequence of collagen: -Gly-Pro-X-Gly-Pro-X-. Thus the S3, S2, and S1 subsites on the enzyme appear to be occupied by the sequence -Gly-Pro-X- and the S1', S2', and S3' subsites also by -Gly-Pro-X-. Short peptides up to and including N alpha-acyltetrapeptides containing the repeat sequence do not detectably inhibit the enzyme (IC50 greater than 10 mM). However, peptide aldehydes of the form aminoacyl-X-glycinal, presumably occupying the S1, S2, ..., Sn subsites, are inhibitors. The most potent of these was Pro6-Gly-Pro-glycinal, with an IC50 of 340 +/- 70 microM. The single peptide aldehyde investigated, which could occupy the S1' and S2' subsites, 4-oxobutanoyl-L-proline, did not inhibit collagenase (IC50 greater than 20 mM). The peptide ketone 5-benzamido-4-oxo-6-phenylhexanoyl-Pro-Ala (XXV), which could occupy the S1-S3' subsites, inhibits collagenase with an IC50 of 120 +/- 50 microM, over 80-fold more potently than its parent peptide analogue benzoyl-Phe-Gly-Pro-Ala (XXIII). The alcohol analogue of XXV, 5-benzamido-4-hydroxy-6-phenylhexanoyl-Pro-Ala (XXVI), is over 60-fold less potent with an IC50 of 8 +/- 2mM. Extending the peptide ketone XXV to occupy the S2-S3' subsites gave 5-(N alpha-carbobenzoxy-L-prolinamido)-4-oxo-6-phenylhexanoyl-Pro -Ala (XXVII). Surprisingly, XXVII had an IC50 of only 5.2 +/- 2 mM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A novel series of potent pyrazolo[1,5-a]pyridine inhibitors of herpes simplex virus 1 replication have been identified. Several complimentary synthetic methods were developed to allow facile access to a diverse set of analogs from common late stage intermediates. Detailed examination of the amine substituents at the C2' position of the pyrimidine and C7 position of the core pyrazolopyridine is described. The antiviral data suggests that non-polar amines are preferred for optimal activity. Additionally, the 2' position has been shown to require an NH group to retain activity levels similar to that of the gold standard acyclovir.  相似文献   

14.
T G Chu  M Orlowski 《Biochemistry》1984,23(16):3598-3603
A soluble metalloendopeptidase isolated from rat brain preferentially cleaves bonds in peptides having aromatic residues in the P1 and P2 position. An additional aromatic residue in the P3' position greatly increases the binding affinity of the substrate, suggesting the presence of an extended substrate recognition site in the enzyme, capable of binding a minimum of five amino acid residues [Orlowski, M., Michaud, C., & Chu, T.G. (1983) Eur. J. Biochem. 135, 81-88]. A series of N-carboxymethyl peptide derivatives structurally related to model substrates and containing a carboxylate group capable of coordinating with the active site zinc atom were synthesized and tested as potential inhibitors. One of these inhibitors, N-[1(RS)-carboxy-2-phenylethyl]-Ala-Ala-Phe-p-aminobenzoate, was found to be a potent competitive inhibitor of the enzyme with a Ki of 1.94 microM. The two diastereomers of this inhibitor were separated by high-pressure liquid chromatography. The more potent diastereomer had a Ki of 0.81 microM. The inhibitory potency of the less active diastereomer was lower by 1 order of magnitude. Decreasing the hydrophobicity of the residue binding the S1 subsite of the enzyme by, for example, replacement of the phenylethyl group with a methyl residue decreased the inhibitory potency by almost 2 orders of magnitude. Deletion of the carboxylate group decreased the inhibitory potency by more than 3 orders of magnitude. Shortening the inhibitor chain by a single alanine residue had a similar effect. Binding of the inhibitor to the enzyme increased its thermal stability.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
C G Knight  A J Barrett 《FEBS letters》1991,294(3):183-186
Some novel N-[1(RS)-carboxy-3-phenylpropyl]tripeptide p-aminobenzoates have been synthesised as inhibitors of thimet oligopeptidase (EC 3.4.24.15). These compounds are considered to bind as substrate analogues with the Cpp group in S1 and the peptide portion in the S' sites. The most potent inhibitor is Cpp-Ala-Pro-Phe-pAb, which has a Ki = 7 nM. Substitution of Gly for Ala at P1' leads to weaker binding which can be ascribed to increased rotational freedom. Good substrates often have Pro at P2' and Pro is favoured over Ala at this position in the inhibitors, too. When P2' is Pro, Phe is preferred over Tyr and Trp in P3'. The p-aminobenzoate group makes an important contribution to the binding, probably by forming a salt bridge, and removal of the C-terminal negative charge results in much less potent inhibitors.  相似文献   

16.
The substrate specificities of three class I (beta, gamma, and eta) and three class II (sigma, epsilon, and zeta) collagenases from Clostridium histolyticum have been investigated by quantitating the kcat/KM values for the hydrolysis of 53 synthetic peptides with collagen-like sequences covering the P3 through P3 subsites of the substrate. For both classes of collagenases, there is a strong preference for Gly in subsites P1' and P3. All six enzymes also prefer substrates that contain Pro and Ala in subsites P2 and P2' and Hyp, Ala, or Arg in subsite P3'. This agrees well with the occupancies of these sites by these residues in type I collagen. However, peptides with Glu in subsites P2 or P2' are not good substrates, even though Glu occurs frequently in these positions in collagen. Conversely, all six enzymes prefer aromatic amino acids in subsite P1, even though such residues do not occur in this position in type I collagen. In general, the class II enzymes have a broader specificity than the class I enzymes. However, they are much less active toward sequences containing Hyp in subsites P1 and P3'. Thus, the two classes of collagenases have similar but complementary sequence specificities. This accounts for the ability of the two classes of enzymes to synergistically digest collagen.  相似文献   

17.
A series of synthetic peptides representing authentic proteolytic cleavage sites of human rhinovirus type 14 were assayed as substrates for purified 3C protease. Competition cleavage assays were employed to determine the relative specificity constants (Kcat/Km) for substrates with sequences related to the viral 2C-3A cleavage site. Variable length peptides representing the 2C-3A cleavage site were cleaved with comparable efficiency. These studies defined a minimum substrate of 6 amino acids (TLFQ/GP), although retention of the residue at position P5 (ETLFQ/GP) resulted in a better substrate by an order of magnitude. Amino acid substitutions at position P5, P4, P1', or P2' indicated that the identity of the residue at position P5 was not critical, whereas substitutions at position P4, P1' or P2' resulted in substrates with Kcat/Km values varying over 2 orders of magnitude. In contrast to the 2C-3A cleavage site, small peptide derivatives representative of the 3A-3B cleavage site were relatively poor substrates, which suggested that residues flanking the minimum core sequence may influence susceptibility to cleavage. The 3C protease of rhinovirus type 14 was also capable of cleaving peptides representing comparable cleavage sites predicted for coxsackie B virus and poliovirus.  相似文献   

18.
The inhibitory constants of a series of synthetic N-carboxymethyl peptide inhibitors and the kinetic parameters (Km, kcat, and kcat/Km) of a series of model synthetic substrates were determined for the membrane-bound kidney metalloendopeptidase isolated from rabbit kidney and compared with those of bacterial thermolysin. The two enzymes show striking similarities with respect to structural requirements for substrate binding to the hydrophobic pocket at the S1' subsite of the active site. Both enzymes showed the highest reaction rates with substrates having leucine residues in this position while phenylalanine residues gave the lowest Km. The two enzymes were also inhibited by the same N-carboxymethyl peptide inhibitors. Although the mammalian enzyme was more susceptible to inhibition than its bacterial counterpart, structural variations in the inhibitor molecules affected the inhibitory constants for both enzymes in a similar manner. The two enzymes differed significantly, however, with respect to the effect of structural changes in the P1 and P2' positions of the substrate on the kinetic parameters of the reaction. The mammalian enzyme showed the highest reaction rates and specificity constants with substrates having the sequence -Phe-Gly-Phe- or -Phe-Ala-Phe- in positions P2, P1, and P1', respectively, while the sequence -Ala-Phe-Phe- was the most favored by the bacterial enzyme. The sequence -Gly-Gly-Phe- as found in enkephalins was not favored by either of the enzymes. Of the substrates having an aminobenzoate group in the P2' position, the mammalian enzyme favored those with the carboxyl group in the meta position while the bacterial enzyme favored those with the carboxyl group in the para position.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Inhibition of collagenase and metalloproteinases by aloins and aloe gel   总被引:1,自引:0,他引:1  
The effects of Aloe barbadensis gel and aloe gel constituents on the activity of microbial and human metalloproteinases have been investigated. Clostridium histolyticum collagenase (ChC) results dose-dependently inhibited by aloe gel and the activity-guided fractionation led to an active fraction enriched in phenolics and aloins. Aloins have been shown to be able to bind and to inhibit ChC reversibly and non-competitively. Aloe gel and aloins are also effective inhibitors of stimulated granulocyte matrix metalloproteinases (MMPs). The remarkable structural resemblances between aloins and the pharmacophore structure of inhibitory tetracyclines, suggest that the inhibitory effects of aloins are via an interaction between the carbonyl group at C(9) and an adjacent hydroxyl group of anthrone (C(1) or C(8)) at the secondary binding site of enzyme, destabilizing the structure of granulocyte MMPs.  相似文献   

20.
The colH gene encoding a collagenase was cloned from Clostridium histolyticum JCM 1403. Nucleotide sequencing showed a major open reading frame encoding a 116-kDa protein of 1,021 amino acid residues. The deduced amino acid sequence contains a putative signal sequence and a zinc metalloprotease consensus sequence, HEXXH. A 116-kDa collagenase and a 98-kDa gelatinase were copurified from culture supernatants of C. histolyticum. While the former degraded both native and denatured collagen, the latter degraded only denatured collagen. Peptide mapping with V8 protease showed that all peptide fragments, except a few minor ones, liberated from the two enzymes coincided with each other. Analysis of the N-terminal amino acid sequence of the two enzymes revealed that their first 24 amino acid residues were identical and coincided with those deduced from the nucleotide sequence. These results indicate that the 98-kDa gelatinase is generated from the 116-kDa collagenase by cleaving off the C-terminal region, which could be responsible for binding or increasing the accessibility of the collagenase to native collagen fibers. The role of the C-terminal region in the functional and evolutional aspects of the collagenase was further studied by comparing the amino acid sequence of the C. histolyticum collagenase with those of three homologous enzymes: the collagenases from Clostridium perfringens and Vibrio alginolyticus and Achromobacter lyticus protease I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号