首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of bleomycin A2 with rat lung microsomes results in bleomycin-mediated DNA chain breakage due to the mixed-function oxidase catalyzed activation of bleomycin. This study demonstrates that the addition of exogenous Fe3+ significantly enhances the bleomycin-mediated cleavage of DNA deoxyribose, that the enhancing effect of Fe3+ is maximum when a 1:1 ratio of bleomycin to Fe3+ is achieved and that either NADPH or NADH can serve as pyridine cofactors for this reaction. Since the activation of bleomycin can be facilitated by iron in the Fe2+ form, these observations support the hypothesis that the mixed-function oxidase system may serve to maintain either adventitious or exogenous iron in the Fe2+ form. In the absence of DNA, the interaction of bleomycin with rat lung microsomes results in the self-inactivation of bleomycin, a reaction which is also enhanced by the addition of exogenous Fe3+. Thus, the microsomal mixed-function oxidase system represents an efficient biological system for the ‘activation-inactivation’ of bleomycin.  相似文献   

2.
The transposon Tn 5 ble gene and the Escherichia coli alkylation-inducible aidC locus are co-operatively involved in the resistance to the anti-cancer drug and DNA-cleaving agent bleomycin and enhance fitness of bacteria in the absence of the drug. In this report, we demonstrate that the aidC locus is identical to nrfG the last gene of the nrf operon involved in the periplasmic formate-dependent nitrite reduction. In the presence of Ble, NrfG expression is specifically induced and restores both bleomycin resistance and its associated beneficial growth effect in an aidC strain. In vitro DNA protection assays reveal that purified Ble prevents bleomycin-mediated DNA breakage, as do bleomycin-binding proteins. Similarities between haems of the cytochrome c biogenesis nrf pathway and iron bleomycin suggest a DNA repair-independent molecular mechanism for both bleomycin resistance and increased viability. The Ble protein binds bleomycin and prevents DNA breakage. It also induces the nrf  locus that may assimilate bleomycin into haem for extracellular transport or inactivate bleomycin. Inactivation of potent DNA oxidants confers a better fitness to the bacterium carrying the transposon, suggesting a symbiotic relationship between host and transposon.  相似文献   

3.
When NADPH-cytochrome P-450 reductase isolated from rat liver microsomes was aerobically incubated with bleomycin, FeCl3, NADPH and DNA parallel NADPH and oxygen were consumed and malondialdehyde was formed. A similar parallelism of NADPH- and oxygen-consumption and malondialdehyde formation was observed when ceil nuclei isolated from rat liver were incubated under the same conditions. The formation of malondialdehyde which was identified by HPLC and which was most likely released from oxidative cleavage of deoxyribose of nuclear DNA required oxygen, bleomycin, FeCl3 and NADPH. This indicates that a nuclear NADPH-enzyme, presumably NADPH-cytochrome P-450 reductase, is able to redox cycle a bleomycin-iron-complex which in the reduced form can activate oxygen to a DNA-damaging reactive species. The data suggest that the activity of this enzyme in the cell nucleus could play an important role in the cytotoxicity of bleomycin in tumor cells.  相似文献   

4.
《Free radical research》2013,47(4-6):271-277
When NADPH-cytochrome P-450 reductase isolated from rat liver microsomes was aerobically incubated with bleomycin, FeCl3, NADPH and DNA parallel NADPH and oxygen were consumed and malondialdehyde was formed. A similar parallelism of NADPH- and oxygen-consumption and malondialdehyde formation was observed when ceil nuclei isolated from rat liver were incubated under the same conditions. The formation of malondialdehyde which was identified by HPLC and which was most likely released from oxidative cleavage of deoxyribose of nuclear DNA required oxygen, bleomycin, FeCl3 and NADPH. This indicates that a nuclear NADPH-enzyme, presumably NADPH-cytochrome P-450 reductase, is able to redox cycle a bleomycin-iron-complex which in the reduced form can activate oxygen to a DNA-damaging reactive species. The data suggest that the activity of this enzyme in the cell nucleus could play an important role in the cytotoxicity of bleomycin in tumor cells.  相似文献   

5.
Sonic disrupted mitoplasts from 3-methylcholanthrene (MCA) treated rats can catalyze the formation of benzo(a)pyrene (BaP) adducts with calf thymus DNA in the presence of an NADPH generating system. The mitoplasts used in this study contained less than 1% microsomal marker enzymes: rotenone insensitive NADPH cytochrome c reductase and glucose-6-phosphatase. The rates of BaP metabolism and DNA adduct formation per nanomole cytochrome P-450 were different for MCA induced mitochondrial and microsomal enzymes. The major B(a)P DNA adducts formed in incubations with lysed mitoplasts were derived from reaction of 9-OH-B(a)P-4,5 oxide with deoxyguanosine. The results suggest a potential role of mitochondrial monooxygenase activity in the covalent binding of B(a)P to mitochondrial DNA.  相似文献   

6.
The enzymatic oxidation of tetrachloro-1,4-hydroquinone (1,4-TCHQ), resulting in covalent binding to protein of tetrachloro-1,4-benzoquinone (1,4-TCBQ), was investigated, with special attention to the involvement of cytochrome P-450 and reactive oxygen species. 1,4-TCBQ itself reacted very rapidly and extensively with protein (58% of the 10 nmol added to 2 mg of protein, in a 5-min incubation). Ascorbic acid and glutathione prevented covalent binding of 1,4-TCBQ to protein, both when added directly and when formed from 1,4-TCHQ by microsomes. In microsomal incubations as well as in a reconstituted system containing purified cytochrome P-450b, 1,4-TCHQ oxidation and subsequent protein binding was shown to be completely dependent on NADPH. The reaction was to a large extent, but not completely, dependent on oxygen (83% decrease in binding under anaerobic conditions). Inhibition of cytochrome P-450 by metyrapone, which is also known to block the P-450-mediated formation of reactive oxygen species, gave a 80% decrease in binding, while the addition of superoxide dismutase prevented 75% of the covalent binding, almost the same amount as found in anerobic incubations. A large part of the conversion of 1,4-TCHQ to 1,4-TCBQ is apparently not catalyzed by cytochrome P-450 itself, but is mediated by superoxide anion formed by this enzyme. The involvement of this radical anion is also demonstrated by microsomal incubations without NADPH but including the xantine/xantine oxidase superoxide anion generating system. These incubations resulted in a 1.6-fold binding as compared to the binding in incubations with NADPH but without xantine/xantine oxidase. 1,4-TCHQ was shown to stimulate the oxidase activity of microsomal cytochrome P-450. It is thus not unlikely that 1,4-TCHQ enhances its own microsomal oxidation.  相似文献   

7.
3-Methyl-substituted fatty acids are first oxidatively decarboxylated (alpha-oxidation) before they are degraded further via beta-oxidation. We synthesized [1-14C]phytanic and 3-[1-14C]methylmargaric acids in order to study their alpha-oxidation in isolated rat hepatocytes, rat liver homogenates and subcellular fractions. alpha-Oxidation was measured as the production of radioactive CO2. In isolated hepatocytes, maximal rates of alpha-oxidation amounted to 7 and 10 nmol/min x 10(8) cells with phytanic acid and 3-methylmargaric acid, respectively. At equimolar substrate concentrations, alpha-oxidation of branched fatty acids was approximately 10- to 15-fold slower than the beta-oxidation of the straight chain palmitate. In whole liver homogenates, rates of alpha-oxidation that equaled 60 to 70% of those observed in the hepatocytes were obtained. Optimum rates required O2, NADPH, Fe3+, and ATP. Fe3+ could be replaced by Fe2+ and ATP could be replaced by a number of other phosphorylated nucleosides and even inorganic phosphate without loss of activity. NADH could substitute for NADPH but not always with full restoration of activity. A variety of other cofactors and metal ions was either inhibitory or without effect. Scavengers of reactive oxygen species, known to be formed during the NADPH-dependent microsomal reduction of ferric-phosphate complexes, were without effect on alpha-oxidation. No evidence was found for the accumulation of NADPH-dependent or Fe(3+)-dependent reaction intermediates. Subcellular fractionation of liver homogenates demonstrated that alpha-oxidation was located predominantly, if not exclusively, in the endoplasmic reticulum. alpha-Oxidation, measured in microsomal fractions, was not inhibited by CO, cytochrome c, or ferricyanide, indicating that NADPH cytochrome P450 reductase and cytochrome P450 are not involved in alpha-oxidation. Our results indicate that, contrary to current belief, alpha-oxidation is catalyzed by the endoplasmic reticulum. The cofactor requirements suggest that alpha-oxidation involves the reduction of Fe3+ by electrons from NADPH and that it is stimulated by phosphate ions and nucleotides.  相似文献   

8.
S T Lim  C K Jue  C W Moore    P N Lipke 《Journal of bacteriology》1995,177(12):3534-3539
Bleomycin mediates cell wall damage in the yeast Saccharomyces cerevisiae. Bleomycin treatments in the presence of Fe(II) increased the rate of spheroplast formation by lytic enzymes by 5- to 40-fold. Neither Fe(III) nor other tested ions caused significant cell wall damage in the presence of bleomycin. The effect of bleomycin-Fe(II) on the cell wall mimicked the characteristics of bleomycin-Fe(II)-mediated DNA damage in dependence on aeration, inhibition by ascorbate, and potentiation by submillimolar concentrations of sodium phosphate. Bleomycin-mediated cell wall damage was time and dose dependent, with incubations as short as 20 min and drug concentrations as low as 3.3 x 10(-7)M causing measurable cell wall damage in strain CM1069-40. These times and concentrations are within the range of effectiveness for bleomycin-mediated DNA damage and for the cytotoxicity of the drug. Although Fe(III) was inactive with bleomycin and O2, the bleomycin-Fe(III) complex damaged walls and lysed cells in the presence of H2O2. H2O2 causes similar activation of bleomycin-Fe(III) in assays of DNA scission. These results suggest that an activated bleomycin-Fe-O2 complex disrupts essential cell wall polymers in a manner analogous to bleomycin-mediated cleavage of DNA.  相似文献   

9.
《Free radical research》2013,47(4-5):261-266
Calf thymus DNA was incubated with bleomycin and FeCl3, in the presence of isolated rat liver microsomal NADH-cytochrome b5 reductase, cytochrome b5 and NADH which catalyze redox cycling of the bleomycin-Fe-complex. Furthermore, isolated rat liver nuclei were incubated with bleomycin, FeCl3 and NADH, a system in which redox cycling of bleomycin-Fe leads to DNA damage. In both systems free bases from DNA were released. Furthermore, 8-hydroxy-guanine was also found in the supernatant. On the other hand, 8-hydroxy-deoxyguanosine was detected in DNA of cell nuclei indicating that hydroxylation of the guanine molecule occurred in intact DNA. The release of bases correlated with the release of malondialydehyde as well as with NADH and oxygen consumption. These results indicate that NADH-cytochrome b5 reductase catalyzes redox cycling of the bleomycin-Fe-complex which results in the formation of reactive oxygen species which oxidize deoxyribose as well as bases of DNA. Both mechanisms may contribute to the cytotoxic and cytostatic effects of bleomycin observed in intact cells.  相似文献   

10.
The bleomycin-mediated digestion of DNA in the presence of ferrous ion, molecular oxygen, and dithiothreitol is characterized by a fast initial reaction, which is followed by a much slower process. The fast degradation is due to the fast activation of the bleomycin-Fe(II) complex and the subsequent fast reaction of the activated complex with DNA. The rate determining step for the slow process is reactivation of the bleomycin-Fe(III) complex. The apparent rate constants for both reactions increase with increasing ionic strength. The latter, unusual results are interpreted in terms of inhibition of bleomycin turnover by binding of cationic species with DNA at low ionic strength.  相似文献   

11.
Catechol and catecholamines have been assayed upon the microsomal NADPH and NADH oxidase activities. Epinephrine shows a catalytic effect on the NADPH oxidation characterized by a small lag. The two to threefold increase in rate can be suppressed by Superoxide dismutase if the enzyme is added before the reaction begins. The catalytic effect is ascribed to a quinone formed by two electron oxidation of epinephrine by the Superoxide ion. The quinone, which is not catalytically active in the NADH chain, appears to mediate electrons between the NADPH-cytochrome c reductase and oxygen. The four electron oxidation product adrenochrome is also active upon the NADPH chain but inactive upon the NADH chain.Epinephrine did not change the menadione-stimulated NADPH oxidase activity. Presumably, during this and the NADH oxidase activities, two electrons are simultaneously transferred to the oxygen molecule.Catechol and catecholamines doubled the rate of autoxidation of NADH in the presence of catalytic amounts of NADH-cytochrome b5 reductase and cytochrome b5, a result which suggests Superoxide ion formation in the autoxidation of the cytochrome.Epinephrine does not act upon the desaturation of endogenous substrate or upon endogenous lipid peroxidation.  相似文献   

12.
Among naphthol derivatives tested in the Ames assay, 5,8-dihydroxy-1,4-naphthoquinone or naphthazarin was found to be the most effective inhibitor of benzo(a)pyrene mutagenicity. The inhibitory activity is due in part to the redox cycling of naphthazarin with the concommitant transfer of reducing equivalents from NADPH to molecular oxygen, thus diverting electrons from cytochrome P-450 enzymes. Metabolite separations showed a decrease in microsomal metabolism of benzo(a)pyrene and of benzo(a)pyrene-7,8-dihydrodoil upon addition of naphthazarin. Since both NADP and dicoumarol inhibited the naphthazarin-stimulated non-stoichiometric consumption of NADPH and oxygen then naphthazarin redox cycling probably involves both DT-diaphorase and NADPH cytochrome P-450 reductase.  相似文献   

13.
The application of cytochrome P-450 in substrate conversion is complicated both due to the limited stability and the cofactor regeneration problems. To overcome the disadvantages of NADPH consumption the transfer of the reduction equivalents from an electrode into the cytochrome P-450-system was studied: 1. NADPH was cathodically reduced at a mercury pool electrode. By immobilization of NADP on dialdehyde Sephadex the reductive recycling was possible. 2. Different forms of reduced oxygen were produced by the cathode: a) The reaction of O2- with deoxycorticosterone yields a carboxylic acid derivative. In contrast the cytochrome P-450 catalyzed NADPH-dependent reaction with the same substrate gives corticosterone, O2- represents only an intermediate in the activation of oxygen and is not the "activated oxygen" species. b) Molecular oxygen was reduced to HO2- and H2O2, respectively. The interaction of adsorbed cytochrome P-450 on the electrode surface with the reduced oxygen species in the absence of NADPH was studied. The electrochemically generated peroxide seems to be more active than added H2O2. 3. In a model of electro-enzyme-reactor several substrates were hydroxylated by microsomal cytochrome P-450 with cathodically reduced oxygen which substitutes NADPH.  相似文献   

14.
7-Hydroxyphenoxazin-3-one, commonly known as resorufin, strongly inhibits benzo(a)pyrene-induced mutation in the Ames bacterial reversion assay. The antimutagenic mechanism is due in part to redox cycling of resorufin with the concommitant transfer of reducing equivalents from NADPH to molecular oxygen. The diversion of electrons from cytochrome P-450 enzymes results in a large decrease in the percent of benzo(a)pyrene metabolized by rat liver microsomes as measured by HPLC. Resorufin stimulated a non-stoichiometric consumption of NADPH and was reduced in S-9 or microsomal solutions. These processes were sensitive to dicumarol and NADP inhibition to different degrees in each liver fraction. This suggests two pathways are involved in resorufin redox cycling, one involving DT-diaphorase and the other with NADPH cytochrome P-450 reductase. Oxygen was shown to be an electron acceptor for S-9 mediated resorufin redox cycling, but was not consumed by a microsomal solution in the presence of resorufin and NADPH.  相似文献   

15.
NADPH-dependent oxygen utilization by liver microsomal fractions was stimulated by the addition of increasing concentrations of butylated hydroxyanisole concomitant with the inhibition of benzphetamine N-demethylase activity. The apparent conversion of monooxygenase activity to an oxidase-like activity in the presence of the antioxidant was correlated with the partial recovery of the reducing equivalents from NADPH in the form of increased hydrogen peroxide production. The progress curve of liver microsomal NADPH oxidase activity in the presence of butylated hydroxyanisole displayed a lag phase indicative of the formation of a metabolite capable of uncoupling the monooxygenase activity. Ethyl acetate extracts of microsomal reaction mixtures obtained in the presence of butylated hydroxyanisole, oxygen, and NADPH stimulated the NADPH oxidase activity of either liver microsomes or purified NADPH-cytochrome c (P-450) reductase. Using high performance liquid chromatography, gas chromatography, and mass spectrometry techniques, two metabolites of butylated hydroxyanisole, namely t-butylhydroquinone and t-butylquinone, were identified. The quinone metabolite and/or its 1-electron reduction product interact with the flavoprotein reductase to directly link the enzyme to the reduction of oxygen which results in an inhibition of the catalytic activity of the cytochrome P-450-dependent monooxygenase.  相似文献   

16.
Copper-dependent cleavage of DNA by bleomycin   总被引:1,自引:0,他引:1  
DNA strand scission by bleomycin in the presence of Cu and Fe was further characterized. It was found that DNA degradation occurred readily upon admixture of Cu(I) or Cu(II) + dithiothreitol + bleomycin, but only where the order of addition precluded initial formation of Cu(II)--bleomycin or where sufficient time was permitted for reduction of the formed Cu(II)--bleomycin to Cu(I)--bleomycin. DNA strand scission mediated by Cu + dithiothreitol + bleomycin was inhibited by the copper-selective agent bathocuproine when the experiment was carried out under conditions consistent with Cu chelation by bathocuproine on the time scale of the experiment. Remarkably, it was found that the extent of DNA degradation obtained with bleomycin in the presence of Fe and Cu was greater than that obtained with either metal ion alone. A comparison of the sequence selectivity of bleomycin in the presence of Cu and Fe using 32P-end-labeled DNA duplexes as substrates revealed significant differences in sites of DNA cleavage and in the extent of cleavage at sites shared in common. For deglycoblemycin and decarbamoylbleomycin, whose metal ligation is believed to differ from that of bleomycin itself, it was found that the relative extents of DNA cleavage in the presence of Cu were not in the same order as those obtained in the presence of Fe. The bleomycin-mediated oxygenation products derived from cis-stilbene were found to differ in type and amount in the presence of added Cu vs. added Fe. Interestingly, while product formation from cis-stilbene was decreased when excess Fe was added to a reaction mixture containing 1:1 Fe(III) and bleomycin, the extent of product formation was enhanced almost 4-fold in reactions that contained 5:1, as compared to 1:1, Cu and bleomycin. The results of these experiments are entirely consistent with the work of Sugiura [Sugiura, Y. (1979) Biochem. Biophys. Res. Commun. 90, 375-383], who first demonstrated the generation of reactive oxygen species upon admixture of O2 and Cu(I)--bleomycin.  相似文献   

17.
Hepatic microsornes metabolize ethanol to a free radical metabolite which forms adducts with the spin trapping agents PBN (phenyl-N-t-butylnitrone) and DMPO (5,5-dimethyl-l-pyrroline N-oxide). This ethanol radical has been identified as the I-hydroxyethyl radical through the use of 13C-labelled ethanol. A role of the cytochrome P-450 enzymes in the generation of the I-hydroxyethyl radical was suggested by requirements for oxygen and NADPH. as well as inhibition in the presence of SKF 525-A and imidazole. In contrast. the ESR signal intensity of the I-hydroxyethyl radical was diminished when either catalase. or the iron chelating agent deferoxdmine. was added to the microsomal incubations, and was increased by the addition of ADP-Fe. These observations suggest that the ethanol radicals may arise secondary to iron-catalyzed formation of hydroxyl radicals from hydrogen peroxide. This possibility was supported by enhanced rates of I-hydroxyethyl radical formation when microsomal catalase activity was inhibited by the addition of sodium azide, or by pretreatment of rats with aminotriazole. However, the reaction was relatively insensitive to scavengers of the hydroxyl radical. Thus, the mechanism of I-hydroxycthyl radical formation could involve two cytochrome P-450-dependent pathways: generation of hydrogen peroxide required for a Fenton reaction, as well as direct catalytic formation of the ethanol radical.  相似文献   

18.
The anticancer drug, bleomycin, causes both single and double strand scission of duplex DNA in vitro, with double strand scission occurring in excess of that expected from the random accumulation of single strand nicks. The mechanism of the preferential double strand scission of DNA by bleomycin has been investigated through the synthesis of a series of double hairpin and linear oligonucleotides designed to contain a single nick-like structure at a defined site to serve as models of bleomycin-damaged duplex DNA. The 3' and/or 5' hydroxyls flanking the nick have been phosphorylated to model the increased negative charge at a bleomycin-generated nick. The ability of bleomycin to cleave the intact strand opposite the nick was then determined by autoradiography. The results demonstrate that phosphorylation at either the 3' or 5' hydroxyl, and especially when both sites are phosphorylated, strongly enhances selective cleavage by bleomycin of the opposite strand. These experiments indicate that bleomycin-mediated double strand scission is a form of self-potentiation in which the high affinity of bleomycin for the initially generated nicked sites leads to a greatly enhanced probability of scission of the strand opposite those sites.  相似文献   

19.
The participation of the microsomal electron transport system involving cytochrome P-450 in ω-oxidation of fatty acids by a rat liver preparation was examined since ω-oxidation involves microsomal reactions requiring both NADPH and molecular oxygen.

ω-Oxidation of fatty acids was inhibited by CO and by the antibody against NADPH-cytochrome c reductase. The addition to the reaction mixture of drugs which interact with cytochrome P-450 inhibited ω-oxidation. It is concluded that the microsomal electron transport system involving cytochrome P-450 functions in ω-oxidation of fatty acids.  相似文献   


20.
E.s.r. spin trapping using the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was used to detect peroxyl, alkoxyl and carbon-centred radicals produced by reaction of t-butyl hydroperoxide (tBuOOH) with rat liver microsomal fraction. The similarity of the hyperfine coupling constants of the peroxyl and alkoxyl radical adducts to those obtained previously with isolated enzymes suggests that these species are the tBuOO. and tBuO. adducts. The effects of metal-ion chelators, heat denaturation, enzyme inhibitors and reducing equivalents demonstrate that these species arise from reaction of tBuOOH with a haem enzyme such as cytochrome P-450 or cytochrome b5. In the absence of NADPH or NADH the previously undetected peroxyl radical adduct is the major species observed. In the presence of these reducing equivalents the alkoxyl and carbon-centred radical adducts predominate, which is in accord with product studies on similar systems. These results demonstrate that both reductive and oxidative decomposition of tBuOOH can occur in rat liver microsomal fraction with the reductive pathway favoured in the presence of NADH or NADPH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号