首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim  To provide a test of the conservatism of a species' niche over the last 20,000 years by tracking the distribution of eight pollen taxa relative to climate type as they migrated across eastern North America following the Last Glacial Maximum (LGM).
Location  North America.
Methods  We drew taxon occurrence data from the North American pollen records in the Global Pollen Database, representing eight pollen types – all taxa for which ≥5 distinct geographic occurrences were available in both the present day and at the LGM (21,000 years ago ± 3000 years). These data were incorporated into ecological niche models based on present-day and LGM climatological summaries available from the Palaeoclimate Modelling Intercomparison Project to produce predicted potential geographic distributions for each species at present and at the LGM. The output for each time period was projected onto the 'other' time period, and tested using independent known occurrence information from that period.
Results  The result of our analyses was that all species tested showed general conservatism in ecological characteristics over the climate changes associated with the Pleistocene-to-Recent transition.
Main conclusions  This analysis constitutes a further demonstration of general and pervasive conservatism in ecological niche characteristics over moderate periods of time despite profound changes in climate and environmental conditions. As such, our results reinforce the application of ecological niche modelling techniques to the reconstruction of Pleistocene biodiversity distribution patterns, and to project the future potential distribution range of species in the face of global-scale climatic changes.  相似文献   

2.
One of the most intriguing questions in current ecology is the extent to which the ecological niches of species are conserved in space and time. Niche conservatism has mostly been studied using coarse‐scale data of species' distributions, although it is at the local habitat scales where species' responses to ecological variables primarily take place. We investigated the extent to which niches of aquatic macrophytes are conserved among four study regions (i.e. Finland, Sweden and the US states of Minnesota and Wisconsin) on two continents (i.e. Europe and North America) using data for 11 species common to all the four study areas. We studied how ecological variables (i.e. local, climate and spatial variables) explain variation in the distributions of these common species in the four areas using species distribution modelling. In addition, we examined whether species' niche parameters vary among the study regions. Our results revealed large variation in both species' responses to the studied ecological variables and in species' niche parameters among the areas. We found little evidence for niche conservatism in aquatic macrophytes, though local environmental conditions among the studied areas were largely similar. This suggests that niche shifts, rather than different environmental conditions, were responsible for variable responses of aquatic macrophytes to local ecological variables. Local habitat niches of aquatic macrophytes are mainly driven by variations in local environmental conditions, whereas their climate niches are more or less conserved among regions. This highlights the need to study niche conservatism using local‐scale data to better understand whether species' niches are conserved, because different niches (e.g. local versus climate) operating at various scales may show different degrees of conservatism. The extent to which species' niches are truly conserved has wide practical implications, including for instance, predicting changes in species' distributions in response to global change.  相似文献   

3.
Aim To investigate relative niche stability in species responses to various types of environmental pressure (biotic and abiotic) on geological time‐scales using the fossil record. Location The case study focuses on Late Ordovician articulate brachiopods of the Cincinnati Arch in eastern North America. Methods Species niches were modelled for a suite of fossil brachiopod species based on five environmental variables inferred from sedimentary parameters using GARP and Maxent . Niche stability was assessed by comparison of (1) the degree of overlap of species distribution models developed for a time‐slice and those generated by projecting niche models of the previous time‐slice onto environmental layers of a second time‐slice using GARP and Maxent , (2) Schoener’s D statistic, and (3) the similarity of the contribution of each environmental parameter within Maxent niche models between adjacent time‐slices. Results Late Ordovician brachiopod species conserved their niches with high fidelity during intervals of gradual environmental change but responded to inter‐basinal species invasions through niche evolution. Both native and invasive species exhibited similar levels of niche evolution in the invasion and post‐invasion intervals. Niche evolution was related mostly to decreased variance within the former ecological niche parameters rather than to shifts to new ecospace. Main conclusions Although the species examined exhibited morphological stasis during the study interval, high levels of niche conservatism were observed only during intervals of gradual environmental change. Rapid environmental change, notably inter‐basinal species invasions, resulted in high levels of niche evolution among the focal taxa. Both native and invasive species responded with similar levels of niche evolution during the invasion interval and subsequent environmental reorganization. The assumption of complete niche conservatism frequently employed in ecological niche modelling (ENM) analyses to forecast or hindcast species geographical distributions is more likely to be accurate for climate change studies than for invasive species analyses over geological time‐scales.  相似文献   

4.
Aim Concerns over how global change will influence species distributions, in conjunction with increased emphasis on understanding niche dynamics in evolutionary and community contexts, highlight the growing need for robust methods to quantify niche differences between or within taxa. We propose a statistical framework to describe and compare environmental niches from occurrence and spatial environmental data. Location Europe, North America and South America. Methods The framework applies kernel smoothers to densities of species occurrence in gridded environmental space to calculate metrics of niche overlap and test hypotheses regarding niche conservatism. We use this framework and simulated species with pre‐defined distributions and amounts of niche overlap to evaluate several ordination and species distribution modelling techniques for quantifying niche overlap. We illustrate the approach with data on two well‐studied invasive species. Results We show that niche overlap can be accurately detected with the framework when variables driving the distributions are known. The method is robust to known and previously undocumented biases related to the dependence of species occurrences on the frequency of environmental conditions that occur across geographical space. The use of a kernel smoother makes the process of moving from geographical space to multivariate environmental space independent of both sampling effort and arbitrary choice of resolution in environmental space. However, the use of ordination and species distribution model techniques for selecting, combining and weighting variables on which niche overlap is calculated provide contrasting results. Main conclusions The framework meets the increasing need for robust methods to quantify niche differences. It is appropriate for studying niche differences between species, subspecies or intra‐specific lineages that differ in their geographical distributions. Alternatively, it can be used to measure the degree to which the environmental niche of a species or intra‐specific lineage has changed over time.  相似文献   

5.
6.
Aim There is increasing evidence that the quality and breadth of ecological niches vary among individuals, populations, evolutionary lineages and therefore also across the range of a species. Sufficient knowledge about niche divergence among clades might thus be crucial for predicting the invasion potential of species. We tested for the first time whether evolutionary lineages of an invasive species vary in their climate niches and invasive potential. Furthermore, we tested whether lineage‐specific models show a better performance than combined models. Location Europe. Methods We used species distribution models (SDMs) based on climatic information at native and invasive ranges to test for intra‐specific niche divergence among mitochondrial DNA (mtDNA) clades of the invasive wall lizard Podarcis muralis. Using DNA barcoding, we assigned 77 invasive populations in Central Europe to eight geographically distinct evolutionary lineages. Niche similarity among lineages was assessed and the predictive power of a combination of clade‐specific SDMs was compared with a combined SDM using the pooled records of all lineages. Results We recorded eight different invasive mtDNA clades in Central Europe. The analysed clades had rather similar realized niches in their native and invasive ranges, whereas inter‐clade niche differentiation was comparatively strong. However, we found only a weak correlation between geographic origin (i.e. mtDNA clade) and invasive occurrences. Clades with narrow realized niches still became successful invaders far outside their native range, most probably due to broader fundamental niches. The combined model using data for all invasive lineages achieved a much better prediction of the invasive potential. Conclusions Our results indicate that the observed niche differentiation among evolutionary lineages is mainly driven by niche realization and not by differences in the fundamental niches. Such cryptic niche conservatism might hamper the success of clade‐specific niche modelling. Cryptic niche conservatism may in general explain the invasion success of species in areas with apparently unsuitable climate.  相似文献   

7.
Empirically derived species distributions models (SDMs) are increasingly relied upon to forecast species vulnerabilities to future climate change. However, many of the assumptions of SDMs may be violated when they are used to project species distributions across significant climate change events. In particular, SDM's in theory assume stable fundamental niches, but in practice, they assume stable realized niches. The assumption of a fixed realized niche relative to climate variables remains unlikely for various reasons, particularly if novel future climates open up currently unavailable portions of species’ fundamental niches. To demonstrate this effect, we compare the climate distributions for fossil‐pollen data from 21 to 15 ka bp (relying on paleoclimate simulations) when communities and climates with no modern analog were common across North America to observed modern pollen assemblages. We test how well SDMs are able to project 20th century pollen‐based taxon distributions with models calibrated using data from 21 to 15 ka. We find that taxa which were abundant in areas with no‐analog late glacial climates, such as Fraxinus, Ostrya/Carpinus and Ulmus, substantially shifted their realized niches from the late glacial period to present. SDMs for these taxa had low predictive accuracy when projected to modern climates despite demonstrating high predictive accuracy for late glacial pollen distributions. For other taxa, e.g. Quercus, Picea, Pinus strobus, had relatively stable realized niches and models for these taxa tended to have higher predictive accuracy when projected to present. Our findings reinforce the point that a realized niche at any one time often represents only a subset of the climate conditions in which a taxon can persist. Projections from SDMs into future climate conditions that are based solely on contemporary realized distributions are potentially misleading for assessing the vulnerability of species to future climate change.  相似文献   

8.
Reconstructing the Pleistocene geography of the Aphelocoma jays (Corvidae)   总被引:1,自引:0,他引:1  
Understanding historical distributions of species and evolving lineages has been a topic of considerable interest, yet methods used to date have not provided detailed, quantitative distributional hypotheses. Here, we present a technique based on models of species’ ecological niches and Pleistocene climate reconstructions that provides such hypotheses, providing the example of reconstructions for the Aphelocoma jays. We demonstrate in general a greater degree than expected of stability in jay species’ distributional areas back through at least the most recent glaciation event, and that existing patterns of genetic differentiation may date to before the Late Pleistocene glaciations. More generally, the method offers the potential for reconstructing historical distributions of species or lineages, and providing a detailed geographic framework for addressing many biogeographic and systematic questions.  相似文献   

9.

Niche conservatism explains biological invasions worldwide. However, a plethora of ecological processes may lead invasive species to occupy environments that are different from those found within native ranges. Here, we assess the potential invadable areas of  the world’s most pervasive invasive amphibians: the cane toad, Rhinella marina?+?R. horribilis, and the North American bullfrog, Lithobates catesbeianus. The uncontrolled spread of such voracious, large-bodied, and disease-tolerant anurans has been documented to impact native faunas worldwide. To disentangle their invasion-related niche dynamics, we compared the predictive ability and distributional forecasts of ecological niche models calibrated with information from native, invaded and pooled (native?+?invaded) ranges. We found that including occurrences from invaded ranges improved model accuracy for both studied species. Non-native occurrences also accounted for 54% and 61% increase in the total area of potential distribution of the cane toad and bullfrog, respectively. Besides, the latter species occupied locations with climatic conditions that are more extreme than those found within its native range. Our results indicate that the occupancy of environments different from those found in native ranges increases the overall potential distribution of the studied invasive anuran species. Therefore, climate information on native ranges alone is insufficient to explain and anticipate the distributional patterns of invasion of cane toads and bullfrogs, underestimating predictions of potential invadable distribution. Moreover, such an observed expansion of realized niches towards occupancy of climates not found within native ranges also has clear implications for invasion risk assessments based on climate modelling worldwide.

  相似文献   

10.
In this study, we explore the interplay of population demography with the evolution of ecological niches during or after speciation in Hordeum. While large populations maintain a high level of standing genetic diversity, gene flow and recombination buffers against fast alterations in ecological adaptation. Small populations harbour lower allele diversity but can more easily shift to new niches if they initially survive under changed conditions. Thus, large populations should be more conservative regarding niche changes in comparison to small populations. We used environmental niche modelling together with phylogenetic, phylogeographic and population genetic analyses to infer the correlation of population demography with changes in ecological niche dimensions in 12 diploid Hordeum species from the New World, forming four monophyletic groups. Our analyses found both shifts and conservatism in distinct niche dimensions within and among clades. Speciation due to vicariance resulted in three species with no pronounced climate niche differences, while species originating due to long‐distance dispersals or otherwise encountering genetic bottlenecks mostly revealed climate niche shifts. Niche convergence among clades indicates a niche‐filling pattern during the last 2 million years in South American Hordeum. We provide evidence that species, which did not encounter population reductions mainly showed ecoclimatic niche conservatism, while major niche shifts occurred in species which have undergone population bottlenecks. Our data allow the conclusion that population demography influences adaptation and niche shifts or conservatism in South American Hordeum species.  相似文献   

11.
Studies on niche evolution allow us to establish how species niches have changed over time and to identify how long‐term evolutionary processes have led to present‐day species distributions. Here, we investigate the patterns of climatic niche evolution in Tynanthus (Bignonieae, Bignoniaceae), a genus of narrowly distributed species. We test the hypothesis that niche conservatism has played an important role in the history of this group of Neotropical lianas. We perform univariate and multivariate comparisons between climatic niches of species and associated environmental data with information on phylogenetic relationships. We encountered considerable divergence in niches among species, indicating that niche conservatism in climatic variables does not seem to have played a key role in the history of the genus. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 95–109.  相似文献   

12.
Study of the evolution of ecological characteristics using phylogenetic information is only beginning, but several new tools and approaches open fascinating possibilities. The Pipridae is a diverse and well‐known family of frugivorous birds that are easily sampled and that are broadly distributed across many Neotropical environments, and as such are appropriate for studies of ecological niche evolution. Using known occurrences and climate and topography data sets, we modeled ecological niches for each species in the family, and carried out analyses aimed at describing ecological niches of manakins and understanding historical patterns of ecological change in the family. Most species’ ecological niches were characterized by warm and relatively humid conditions, reflecting the great diversification of the family in lowland and montane forests of western South America. Ecological niche evolution was in general conservative, with most sister species pairs being closely similar ecologically, indicating that isolation rather than adaptation to new ecological conditions has dominated the diversification in this family. Exceptions to this pattern represent interesting foci for future research, whereas studies of ecological niches focusing on past distributions of manakins will allow further biogeographic inferences.  相似文献   

13.
There are many hypotheses of relationships, and also of speciation processes, in North American freshwater fishes, although, to date, there have been no direct tests of whether there is evidence of ecological niche conservatism. In the present study, ecological niche modeling is used to look for evidence of ecological niche conservatism in six clades of freshwater fishes: the starheaded topminnows, sand darters, black basses, Notropis rubellus species group, Notropis longirostris species group, and the Hybopsis amblops species group. This is achieved by evaluating the reciprocal predictivity of distributional predictions based on ecological niche models developed for each individual taxon in a clade under the assumption that high reciprical predictivity between sister species can be taken as evidence of niche conservatism. Omission percentages, total and average commission, and the area under the curve in a receiver operating characteristic analysis, where calculated, are used to evaluate predictive ability. Occurrence data for each species were subset into a training and independent validation data set where possible. Across all clades and species, models predicted the validation data for a given species well. Ecological niche conservatism was found generally across the starheaded topminnows, the sand darters, and the N. longirostris species group. There was some inter-predictivity within the N. rubellus group, but almost no inter-predictivity within the black basses, indicating a lack of conservatism. These results demonstrate that ecological niches generally act as stable constraints on freshwater fish distributions in North America.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 282–295.  相似文献   

14.
Geographic and ecological distributions of three Lutzomyia sand flies that are cutaneous leishmaniasis vectors in South America were analysed using ecological niche modelling. This new tool provides a large-scale perspective on species' geographic distributions, ecological and historical factors determining them, and their potential for change with expected environmental changes. As a first step, the ability of this technique to predict geographic distributions of the three species was tested statistically using two subsampling techniques: a random-selection technique that simulates 50% data density, and a quadrant-based technique that challenges the method to predict into broad unsampled regions. Predictivity under both test schemes was highly statistically significant. Visualisation of ecological niches provided insights into the ecological basis for distributional differences among species. Projections of potential geographic distributions across scenarios of global climate change suggested that only Lutzomyia whitmani is likely to be experiencing dramatic improvements in conditions in south-eastern Brazil, where cutaneous leishmaniasis appears to be re-emerging; Lutzomyia intermedia and Lutzomyia migonei may be seeing more subtle improvements in climatic conditions, but the implications are not straightforward. More generally, this technique offers the possibility of new views into the distributional ecology of disease, vector, and reservoir species.  相似文献   

15.
The progressive expansion of the Australian arid zone during the last 20 Ma appears to have spurred the diversification of several families of plants, vertebrates and invertebrates, yet such taxonomic groups appear to show limited niche radiation. Here, we test whether speciation is associated with niche conservatism (constraints on ecological divergence) or niche divergence in a tribe of marsupial mice (Sminthopsini; 23 taxa) that includes the most speciose genus of living dasyurids, the sminthopsins. To that end, we integrated phylogenetic data with ecological niche modelling, to enable us to reconstruct the evolution of climatic suitability within Sminthopsini. Niche overlap among species was low‐moderate (but generally higher than expected given environmental background similarity), and the degree of phylogenetic clustering increased with aridity. Climatic niche reconstruction illustrates that there has been little apparent evolution of climatic tolerance within clades. Accordingly, climatic disparity tends to be accumulated among clades, suggesting considerable niche conservatism. Our results also indicate that evolution of climatic tolerances has been heterogeneous across different dimensions of climate (temperature vs. precipitation) and across phylogenetic clusters (Sminthopsis murina group vs. other groups). Although some results point to the existence of shifts in climatic niches during the speciation of sminthopsins, our study provides evidence for substantial phylogenetic niche conservatism in the group. We conclude that niche diversification had a low impact on the speciation of this tribe of small, but highly mobile marsupials.  相似文献   

16.
Determining the spread and potential geographical distribution of invasive species is integral to making invasion biology a predictive science. We assembled a dataset of over 1000 occurrences of the Argentine ant (Linepithema humile), one of the world's worst invasive alien species. Native to central South America, Argentine ants are now found in many Mediterranean and subtropical climates around the world. We used this dataset to assess the species' potential geographical and ecological distribution, and to examine changes in its distributional potential associated with global climate change, using techniques for ecological niche modelling. Models developed were highly predictive of the species' overall range, including both the native distributional area and invaded areas worldwide. Despite its already widespread occurrence, L. humile has potential for further spread, with tropical coastal Africa and southeast Asia apparently vulnerable to invasion. Projecting ecological niche models onto four general circulation model scenarios of future (2050s) climates provided scenarios of the species' potential for distributional expansion with warming climates: generally, the species was predicted to retract its range in tropical regions, but to expand at higher latitude areas.  相似文献   

17.
Background and AimsClimate is an important parameter in delimiting coarse-grained aspects of fundamental ecological niches of species; evolution of these niches has been considered a key component in biological diversification. We assessed phylogenetic niche conservatism and evolution in 24 species of the family Oleaceae in relation to temperature and precipitation variables. We studied niches of 17 Olea species and 7 species from other genera of Oleaceae globally.MethodsWe used nuclear ribosomal and plastid DNA to reconstruct an evolutionary tree for the family. We used an approach designed specifically to incorporate uncertainty and incomplete knowledge of species’ ecological niche limits. We performed parsimony- and likelihood-based reconstructions of ancestral states on two independent phylogenetic hypotheses for the family. After detailed analysis, species’ niches were classified into warm and cold niches, wet and dry niches, and broad and narrow niches.Key ResultsGiven that full estimates of fundamental niches are difficult, we explore the alternative approach of explicit incorporation of knowledge of gaps in the information available, which allows avoidance of overestimation of amounts of evolutionary change. The result is a first synthetic view of evolutionary dynamics of ecological niches and distributional potential in a widespread plant family. Temperate regions of the Earth were occupied only by lineages that could derive with cold and dry niches; Southeast Asia held species with warm and wet niches; and parts of Africa held only species with dry niches.ConclusionsHigh temperature in Lutetian (Oligocene) and low temperature in Rupelian (Eocene) with major desertification events play important role for niche retraction and expansion in the history for Oleaceae clades. Associations between environmental niche characteristics and phylogeny reconstruction play an important role in understanding ecological niche conservatism, the overall picture was relatively slow or conservative niche evolution in this group.  相似文献   

18.
We tested the utility of the modelling program Genetic Algorithm for Rule-set Prediction (GARP) for modelling ecological niches to make accurate predictions of geographical distributions for 25 bird species across Mexico. Specimen-based point-occurrence data were entered into the algorithm in the form of geographical coordinates, and related to digitized maps of environmental variables, including mean annual precipitation, elevation, mean annual temperature, and potential vegetation. Two Mexican states were used as test areas by withholding their points from model construction; these points were later overlaid on predictions to measure model performance. Statistically, most models (7890%) were significantly more powerful than random models in predicting occurrences in test states; model failures were most often due to low sample size for testing, rather than an inability to model distributions of particular species. The success of this test indicates that ecological niche modelling approaches such as GARP provide a promising tool for exploring a broad range of questions in ecology, biogeography and conservation.  相似文献   

19.
Hutchinson defined the ecological niche as a hypervolume shaped by the environmental conditions under which a species can ‘exist indefinitely’. Although several authors further discussed the need to adopt a demographic perspective of the ecological niche theory, very few have investigated the environmental requirements of different components of species’ life cycles (i.e. vital rates) in order to examine their internal niche structures. It therefore remains unclear how species’ demography, niches and distributions are interrelated. Using comprehensive demographic data for two well‐studied, short‐lived plants (Plantago coronopus, Clarkia xantiana), we show that the arrangement of species’ demographic niches reveals key features of their environmental niches and geographic distributions. In Plantago coronopus, opposing geographic trends in some individual vital rates, through different responses to environmental gradients (demographic compensation), stabilize population growth across the range. In Clarkia xantiana, a lack of demographic compensation underlies a gradient in population growth, which could translate in a directional geographic range shift. Overall, our results highlight that occurrence and performance niches cannot be assumed to be the same, and that studying their relationship is essential for a better understanding of species’ ecological niches. Finally, we argue for the value of considering the assemblage of species’ demographic niches when studying ecological systems, and predicting the dynamics of species geographical ranges.  相似文献   

20.
Aims This study explores the patterns of niche differentiation in a group of seven closely related columbines (genus Aquilegia, Ranunculaceae) from the Iberian Peninsula. Populations of these columbines are subject to complex patterns of divergent selection across environments, which partly explain the taxonomic structure of the group. This suggests the hypothesis that niche divergence must have occurred along the process of diversification of the group.Methods We used MaxEnt to build environmental niche models of seven subspecies belonging to the three species of Aquilegia present in the Iberian Peninsula. From these models, we compared the environmental niches through two different approaches: ENMtools and multivariate methods.Important findings MaxEnt distributions conformed closely to the actual distribution of the study taxa. ENMtools methods failed to uncover any clear patterns of niche differentiation or conservatism in Iberian columbines. Multivariate analyses indicate the existence of differentiation along altitudinal gradients and along a gradient of climatic conditions determined by the summer precipitation and temperatures. However, climatic conditions related to winter temperature and precipitation, as well as soil properties, were equally likely to show conservatism or divergence. The complex patterns of niche evolution we found suggest that Iberian Columbines have not been significantly constrained by forces of niche conservatism, so they could respond adaptively to the fast and profound climate changes in the Iberian Peninsula through the glacial cycles of the Pleistocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号