首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Synopsis Behavior of largemouth bass, Micropterus salmoides, and northern pike, Esox lucius, foraging on fathead minnows, Pimephales promelas, or bluegills, Lepomis macrochirus, was quantified in pools with 50% cover (half the pool had artificial stems at a density of 1000 stems m−2). Both predators spent most of their time in the vegetation. Largemouth bass searched for bluegills and ambushed minnows, whereas the relatively immobile northern pike ambushed all prey. Minnows were closer to predators and were captured more frequently than bluegills. Even when minnows dispersed, they moved continually and eventually wandered within striking distance of a predator. Bluegills dispersed in the cover with predators. Bass captured the few bluegills that strayed into the open and pike captured those that approached too closely in the cover. The ability of predators to capture prey while residing in habitats containing patches of dense cover may explain their residence in areas often considered to be poor ones for foraging. The unit is sponsored jointly by the United States Fish and Wildlife Service, Ohio Department of NaturalResources, The Ohio State University, and the Wildlife Management Institute  相似文献   

2.
Synopsis Juvenile bluegill sunfish, Lepomis macrochirus, are known to use beds of aquatic vegetation as a refuge from predators. This study examines the effects of increasing plant stem density on juvenile bluegill foraging. Three stem densities (100, 250 and 500 stems m−2), varying in their refuge potential for bluegills from predators, were tested. Results demonstrate that stem densities chosen as a refuge from predation (i.e. 500 stems m−2) significantly reduced bluegill foraging success and increased time required to capture prey. Therefore, juvenile bluegills seeking safety in vegetation may be faced with a trade-off between foraging success and effective refuge from predation when choosing among plant stem densities.  相似文献   

3.
Synopsis Juvenile bluegill sunfish,Lepomis macrochira, are restricted to vegetated habitats by predators. Variation in plant stem density has a significant effect on bluegill foraging success. Given the mosaic nature of this habitat, plant stem density may provide a cue for selecting among patches in which to forage. In this study, juvenile bluegills were offered patches of artificial vegetation differing only in plant stem density as potential foraging sites. Three densities, 100, 250, and 500 stems m–2 were tested. Fish were presented with a choice between patches (100:250, 250:500, or 100:500). Bluegill foraging rate in, and the number of fish choosing each patch was recorded. Juvenile bluegills showed a preference for those patches which maximized their foraging rate.  相似文献   

4.
Synopsis In northern clear-water systems, bluegill, Lepomis macrochira, select habitats based on relative reward rates and risk of predation. However, because freshwater systems to the south are often turbid, and their resident fish species different, bluegill habitat use patterns may differ from those found in northern clear-water systems. Here I examine the effects of elimination of the inshore macrophyte refuge (an indirect effect of turbidity), and decreased pelagic predation rates on bluegill due to the presence of gizzard shad, Dorosoma cepedianum, in laboratory pools. Bluegill used depths 20 cm more often with largemouth bass, Micropterus salmoides, than without them; the presence of a preferred alternate prey, gizzard shad, did not affect this behavior. Though bluegill did not alter their habitat use in response to bass activity, they did school more as predator activity increased. Even in the presence of a preferred alternate prey without macrophytes, bluegill continue to use shallow littoral areas to avoid predation.This Unit is sponsored jointly by The United States Fish and Wildlife Service, Ohio Department of Natural Resources, The Ohio State University, and the Wildlife Management Institute.  相似文献   

5.
Mark C. Belk 《Oecologia》1998,113(2):203-209
Previous studies suggested that differences in age at maturity among populations of bluegill sunfish (Lepomis macrochirus) were not genetically based, but rather were a phenotypic response to the presence of predators. I conducted two experiments to determine if the presence of largemouth bass affected age at maturity in bluegill sunfish. Bluegills from three populations were tested to see if the response to the threat of predation varied among source populations. Juvenile bluegills were maintained in the presence of predators or in controls with no contact with predators. Refuge use and growth were monitored during the experiments and reproductive activity was evaluated when bluegills reached age 1. Bluegills from one population exhibited delayed maturity in the presence of predators. Individuals from the other two populations showed no significant differences between predator and control treatments. The population that responded to the presence of predators had a history of high predation levels over the past 30–40 years. The other populations had a history of low levels of predation. This study suggests that presence of predators can induce phenotypic shifts in age at maturity of bluegills, but that the magnitude of response varies among populations in a manner consistent with historical patterns of coexistence. Received: 7 August 1996 / Accepted: 8 August 1997  相似文献   

6.
Gizzard shad (Dorosoma cepedianum), a filter feeding omnivore, can consume phytoplankton, zooplankton and detritus and is a common prey fish in U.S. water bodies. Because of their feeding habits and abundance, shad have the potential to affect primary productivity (and hence water quality) directly through phytoplankton grazing and indirectly through zooplankton grazing and nutrient recycling. To test the ability of shad to influence primary productivity, we conducted a 16-day enclosure study (in 2.36-m3 mesocosms) and a 3-year whole-pond manipulation in 2–5 ha earthen ponds. In the mesocosm experiment, shad reduced zooplankton density and indirectly enhanced chlorophyll a concentration, primary productivity, and photosynthetic efficiency (assimilation number). While shad did not affect total phytoplankton density in the mesocosms, the density of large phytoplankton was directly reduced with shad. Results from the pond study were not consistent as predicted. There were few changes in the zooplankton and phytoplankton communities in ponds with versus ponds without gizzard shad. One apparent difference from systems in which previous work had been conducted was the presence of high densities of a potential competitor (i.e., larval bluegill) in our ponds. We suggest that the presence of these extremely high larval bluegill densities (20–350 larval bluegill m–3; 3–700 times higher density than that of larval gizzard shad) led to the lack of differences between ponds with versus ponds without gizzard shad. That is, the influence of gizzard shad on zooplankton or phytoplankton was less than the influence of abundant bluegill larvae. Differences in systems across regions must be incorporated into our understanding of factors affecting trophic interactions in aquatic systems if we are to be able to manage these systems for both water quality and fisheries.  相似文献   

7.
Ecological trade-offs by organisms to minimize mortality and maximize growth is a foundational theme in ecology. Yet, these trade-offs are rarely examined within spatially complex, temporally variable ecosystems, such as floodplain rivers. Here, we evaluate ecological trade-offs across space and time for the bluegill (Lepomis macrochirus) in two unregulated river ecosystems in southeastern USA. Life-history differences among spatially segregated main channel and floodplain lake populations were used to assess effects of habitat type on bluegill fitness. Growth, condition, and gonadal somatic index were all significantly enhanced in floodplain lakes relative to the main channel. Furthermore, stomach fullness was significantly higher, and predator densities significantly lower in floodplain lakes thereby providing an ecological explanation for the life-history plasticity observed across the riverscape. However, historical observations suggested that although floodplain lakes are highly productive for bluegills, they are also prone to complete desiccation by drought approximately every 5 years, revealing the ultimate value of channel habitat, which does not dry, as desiccation refugia. Bluegills are faced with a balancing act associated with variation in foraging opportunities, and risks to predation and desiccation, that change in both the temporal and the spatial dimensions of floodplain rivers. The differential responses to these opportunities and risks help to explain why both habitats remain actively populated by bluegills, as well as many other organisms, in these and many other natural rivers.  相似文献   

8.
Summary In situations where foraging sites vary both in food reward and predation risk, conventional optimal foraging models based on the criterion of maximizing net rate of energy intake commonly fail to predict patch choice by foragers. Recently, an alternative model based on the simple rule when foraging, minimize the ratio of mortality rate (u) to foraging rate (f) was successful in predicting patch preference under such conditions (Gilliam and Fraser 1987). In the present study, I compare the predictive ability of these two models under conditions where available patches vary both in predation hazard and foraging returns. Juvenile bluegill sunfish (Lepomis macrochirus) were presented with a choice between two patches of artificial vegetation differing in stem density (i.e. 100, 250, and 500 stems/m2) in which to forage. Each combination (100:250, 250:500, or 100:500) was presented in the absence, presence, and after exposure to a bass predator (Micropterus salmoides). Which patch of vegetation bluegills chose to forage in, and foraging rate within each patch were recorded. Independent measurements of bluegill foraging rate and risk of mortality in the three stem densities provided the data for predicting patch choice by the two models. With no predator, preference between plots was consistent with the maximize energy intake per unit time rule of conventional optimality models. However, with a predator present, patch preference switched to match a minimize u/f criterion. Finally, when tested shortly after exposure to a predator (i.e. 15 min), bluegill preference appeared to be in a transitional phase between these two rules. Results are discussed with respect to factors determining the distribution of organisms within beds of aquatic vegetation.  相似文献   

9.
Chipps SR  Dunbar JA  Wahl DH 《Oecologia》2004,138(1):32-38
Bluegill sunfish (Lepomis macrochirus) are known to diversify into two forms specialized for foraging on either limnetic or littoral prey. Because juvenile bluegills seek vegetative cover in the presence of largemouth bass (Micropterus salmoides) predators, natural selection should favor the littoral body design at size ranges most vulnerable to predation. Yet within bluegill populations, both limnetic and littoral forms occur where vegetation and predators are present. While adaptive for foraging in different environments, does habitat-linked phenotypic variation also influence predator evasiveness for juvenile bluegills? We evaluate this question by quantifying susceptibility to predation for two groups of morphologically distinct bluegills; a limnetic form characteristic of bluegills inhabiting open water areas (limnetic bluegill) and a littoral form characteristic of bluegills inhabiting dense vegetation (littoral bluegill). In a series of predation trials, we found that bluegill behaviors differed in open water habitat but not in simulated vegetation. In open water habitat, limnetic bluegills formed more dense shoaling aggregations, maintained a larger distance from the predator, and required longer amounts of time to capture than littoral bluegill. When provided with simulated vegetation, largemouth bass spent longer amounts of time pursuing littoral bluegill and captured significantly fewer littoral bluegills than limnetic fish. Hence, morphological and behavioral variation in bluegills was linked to differential susceptibility to predation in open water and vegetated environments. Combined with previous studies, these findings show that morphological and behavioral adaptations enhance both foraging performance and predator evasiveness in different lake habitats.  相似文献   

10.
The behavioural response of juvenile bluegill sunfish (Lepomis macrochirus) to predation risk when selecting between patches of artificial vegetation differing in food and stem density was investigated. Bluegill foraging activity was significantly affected by all three factors. Regardless of patch stem density or risk of predation bluegills preferred patches with the highest prey number. During each trial bluegill foraging activity was clearly divided into a between- and within-patch component. In the presence of a predator bluegills reduced their between-patch foraging activity by an equivalent amount regardless of patch stem density or food level, apparently showing a risk-adjusting behavioural response to predation risk. Within patches, however, foraging activity was affected by both food level and patch stem density. When foraging in a patch offering a refuge from predation, the presence of a predator had no effect on bluegill foraging activity within this patch. However, if foraging in a patch with only limited refuge potential, bluegill foraging activity was reduced significantly in the presence of a predator. Further, this reduction was significantly greater if the patch contained a low versus a high food level, indicating a risk-balancing response to predation with respect to within-patch foraging activity. Both these responses differ from the risk-avoidance response to predation demonstrated by juvenile bluegills when selecting among habitats. Therefore, our results demonstrate the flexibility of juvenile bluegill foraging behaviour.  相似文献   

11.
C. L. Pierce 《Oecologia》1988,77(1):81-90
Summary Dragonfly larvae (Odonata: Anisoptera) are often abundant in shallow freshwater habitats and frequently co-occur with predatory fish, but there is evidence that they are underutilized as prey. This suggests that species which successfully coexist with fish may exhibit behaviors that minimize their risk of predation. I conducted field and laboratory experiments to determine whether: 1) dragonfly larvae actively avoid fish, 2) microhabitat use and foraging success of larvae are sensitive to predation risk, and 3) vulnerability of larvae is correlated with microhabitat use. I experimentally manipulated the presence of adult bluegills (Lepomis macrochirus) in defaunated patches of littoral substrate in a small pond to test whether colonizing dragonfly larvae would avoid patches containing fish. The two dominant anisopteran species, Tetragoneuria cynosura and Ladona deplanata (Odonata: Libellulidae), both strongly avoided colonizing patches where adult bluegills were present. Laboratory experiments examined the effects of diel period and bluegills on microhabitat use and foraging success, using Tetragoneuria, Ladona and confamilial Sympetrum semicictum, found in a nearby fishless pond. Tetragoneuria and Ladona generally occupied microhabitats offering cover, whereas Sympetrum usually occupied exposed locations. Bluegills induced increased use of cover in all three species, and use of cover also tended to be higher during the day than at night. Bluegills depressed foraging in Tetragoneuria and to a lesser extent in Ladona, but foraging in Sympetrum appeared unaffected. Other laboratory experiments indicated that Sympetrum were generally more vulnerable than Tetragoneuria or Ladona to bluegill predation, and that vulnerability was positively correlated with use of exposed microhabitats. Both fixed (generally low use of exposed microhabitats, diel microhabitat shifts) and reactive (predator avoidance, predator-sensitive microhabitat shifts) behavioral responses appear to reduce risk of predation in dragonfly larvae. Evidence indicates that vulnerability probably varies widely among species and even among instars within species, and suggests that spatial distributions of relatively vulnerable species may be limited by their inability to avoid predation.  相似文献   

12.
Dispersal of plant fragments in small streams   总被引:7,自引:1,他引:6  
1. Streams are subject to frequent natural and anthropogenic disturbances that cause sediment erosion and loss of submerged vegetation. This loss makes downstream transport and retention of vegetative propagules on the streambed very important for re‐establishing vegetation cover. We measured dispersal and retention of macrophyte stem fragments (15–20 cm long) along 300 m long reaches of four small to medium sized Danish lowland streams. 2. The number of drifting stem fragments declined exponentially with distance below the point of release. This finding makes the retention coefficient (k, m−1) in the exponential equation a suitable measure for comparisons among different macrophyte species, and between stream reaches of different hydrology and vegetation cover. 3. Buoyancy of macrophyte tissue influenced retention. Elodea canadensis stems drifted below the water surface, and were more inclined to be retained in deeper water associated with submerged plants and obstacles in the streambed. Ranunculus peltatus stems were more buoyant, drifted at the water surface, and were more inclined to be trapped in shallow water and in riparian vegetation. 4. The retention coefficient of drifting stems increased with the relative contact between the flowing water and streambed, bank and vegetation. Thus, the retention coefficients were highest (0.02–0.12 m−1) in shallow reaches with a narrow, vegetation‐free flow channel. Here there were no significant differences between E. canadensis and R. peltatus. Retention coefficients were lowest (0.0005–0.0135 m−1) in deeper reaches with wider vegetation‐free flow channels. Retention of E. canadensis was up to 16 times more likely than retention of R. peltatus. 5. Overall, the longitudinal position in the stream system of source populations of species capable of producing numerous stems, the species‐specific retention coefficients of stems, and the retention capacity of stream reaches should be important for species distribution in perturbed stream systems. Retention of stems is probably constrained in headwaters by the small downstream flux of stem fragments because of the restricted source area, and constrained in downstream reaches by small retention coefficients. Macrophyte retention may, consequently, peak in medium‐sized streams.  相似文献   

13.
Optimal foraging theory is devoted to understanding how organisms maximize net energy gain. However, both the theory and empirical studies lack critical components, such as effects of environmental variables across habitats. We addressed the hypothesis that energetic returns of juvenile bluegill are affected by environmental variables characteristic of the vegetated habitats. Predicted optimal diet breadths were calculated and compared to prey items eaten by juvenile bluegill to determine if bluegill were foraging to maximize energetic gain. Differences in habitat profitability among vegetated sites were determined by comparing predictions of maximized energetic return rates (cals-1) with prey contents of bluegill stomachs. Sizes of most prey items eaten by juvenile bluegill throughout the vegetated sites were smaller than the predicted optimal diet breadths. However, inclusion of smaller prey items in the diet did not seem to affect rate of energetic gain. Energetic return rates were maximized at the 1.5 and 2mm prey size classes and declined only slightly with inclusion of smaller prey sizes. Predicted energetic return rates and average mass in bluegill stomachs were related negatively. Average mass in bluegill stomachs also was associated negatively with Elodea canadensis stem densities and percent of light transfer, suggesting that foraging efficiency of bluegill decreased as plant density and percent of light increased. Results of our research indicate that maximization of energetic return rates is dependent upon availability of prey sizes that contribute to optimal foraging. Thus, determination of those habitats that provide the highest availability of benthic invertebrate prey with the least interference by stems is critical. Enhanced foraging capabilities can promote recruitment, faster growth, better body condition and survival.  相似文献   

14.
L. Cardona  P. Royo  X. Torras 《Hydrobiologia》2001,462(1-3):233-240
Some mugilid fish are known to enhance small phytoplankton in freshwater macrophyte-free environments due to zooplankton depletion. This suggests that they may have negative effects on natural macrophyte beds of freshwater and oligohaline lagoons due to phytoplantkon enhancement. To test this hypothesis, we compared the ecosystems of control enclosures that contained no fish with those of enclosures stocked with Liza saliens at two different densities. The occurrence of L. saliens at a density of 321±92.42 kg ha–1 reduced cladoceran density, depleted epiphytic chironomid larvae, enhanced mayfly nymphs and cyclopoid copepods and reduced the organic matter content of sediment, all in comparison with control enclosures. At a density of 673±42.04 kg ha–1, L. saliens reduced total zooplankton density, depleted epiphytic and sediment dwelling chironomid larvae and enhanced mayfly nymphs. The organic matter contents of sediment was not affected. These results showed that L. saliens was very effective in reducing zooplankton density even when macrophyte biomass was high. However, these effects do not affect phytoplankton density, probably because zooplankton was dominated by species with low filter-feeding rates and macrophytes depleted nutrients.  相似文献   

15.
Oertli  Beat 《Hydrobiologia》1995,(1):195-204
Spatial and temporal changes of zoobenthos composition and density were assessed in a woodland pond, near Geneva (Switzerland), by monthly sampling (during 15 months), on the three main substrates: a submerged macrophyte (Chara sp.), an emergent macrophyte (Typha latifolia stems) and allochthonous detritus (oak leaves).Many taxa showed preferences for one or two of the substrates, as expressed by differences in densities, but few taxa presented an exclusivity for one substrate. Zoobenthos densities (per m2 of pond bottom) were largely dominated on all substrates and seasons by Chironomidae and Oligochaeta. Other dense macroinvertebrates included Ostracoda (on Chara and Typha stems), Gastropoda (on Typha stems), Ephemeroptera (all substrates), and Ceratopogonidae (on Typha stems).The magnitude of temporal differences in densities was expressed by the ratio of maximal to minimal monthly densities and reached values between 2.8 to 11.8. On all substrates the highest monthly densities were observed in summer or beginning of autumn. The temporal changes in densities were strongly influenced by the life cycles of the invertebrates: presence of numerous young individuals in summer (for example Cypridopsis vidua, Cloeon dipterum, Caenis horaria, Ferrissia wautieri), and emergence (for example Chironomidae in April). Fluctuations in densities, especially on Chara and leaves, were also attributed to modification of substrate condition (surface availability, stage in the decomposition or senescence process). Temporal fluctuations of densities were compared with other lentic water bodies: highest densities showed a common trend, occurring between end of spring and beginning of autumn.  相似文献   

16.
1. To correctly interpret chironomid faunas for palaeoenvironmental reconstruction, it is essential that we improve our understanding of the relative influence of ecosystem variables, biotic as well as physicochemical, on chironomid larvae. To address this, we analysed the surface sediments from 39 shallow lakes (29 Norfolk, U.K., 10 Denmark) for chironomid head capsules, and 70 chironomid taxa (including Chaoborus) were identified. 2. The shallow lakes were selected over large environmental gradients of aquatic macrophytes, total phosphorus (TP) and fish communities. Redundancy analysis (RDA) identified two significant variables that explained chironomid distribution: macrophyte species richness (P < 0.001) and TP (P < 0.005). Generalised linear models (GLM) identified specific taxa that had significant relationships with both these variables. Macrophyte percentage volume infested (PVI) and species richness were significant in classifying the lake types based on chironomid communities under twinspan analysis, although other factors, notably nutrient concentrations and fish communities, were also important, illustrating the complexities of classifying shallow lake ecosystems. Lakes with plant species richness >10 all had relatively diverse (Hill’s N2) chironomid assemblages, and lakes with Hill’s N2 >10 all had TP <250 μg L−1 and total fish densities <2 fish per m2. 3. Plant density (PVI), and perhaps more importantly species richness, were primary controls on the distribution of chironomid communities within these lakes. This clearly has implications for palaeoenvironmental reconstructions using zoobenthos remains (i.e. chironomids) and suggests that they could be used to track changes in benthic/pelagic production and could be used as indicators of changing macrophyte habitat. 4. Measuring key biological gradients, in addition to physicochemical gradients, allowed the major controls on chironomid distribution to be assessed more directly, in terms of plant substrate, food availability, competition and predation pressure, rather than implying indirect mechanisms through relationships with nutrients. Many of these variables, notably macrophyte abundance and species richness, are not routinely measured in such studies, despite their importance in determining zoobenthos in temperate shallow lakes. 5. When physical, chemical and ecological gradients are considered, as is often the case with palaeo‐reconstructions rather than training sets chosen to maximise one gradient, complex relationships exist, and attempting to reconstruct a single trophic variable quantitatively may not be appropriate or reliable.  相似文献   

17.
Bluegills, Lepomis macrochirus, form schools and use shade to avoid predators. How light intensity, predators, and experience might affect antipredator behavior of bluegill are not well understood. Hence, we evaluated use of shade and schooling by naive (hatchery) and experienced (wild) bluegills (50–60 mm total length) at four light levels (1.5, 85, 169, 340 lux) in the presence and absence of a model predator in experimental pools. Naive bluegills used shade extensively at all light levels, even when the predator was in the shade. They rarely schooled, preferring to shoal in the shade. Experienced bluegill used shade when the predator was in the open and avoided shade when the predator was there. Schooling was more prevalent at low light levels when shade was less intense. Use of shade became an increasingly important behavior at higher light levels, unless the predator was in the shade. A shaded predator caused experienced bluegills to shoal tightly in the opposite, open area. These data suggest naive bluegills may not have considered the model predator a threat. Their behavior suggests avian predator avoidance, a possibility given that avian predators were present at the hatchery. Experienced bluegill employed behaviors that would be useful in avoiding piscine predators.  相似文献   

18.
Knowledge of the presence of an invasive species is critical to monitoring the sustainability of communities and ecosystems. Environmental DNA (eDNA), DNA fragments that are likely to be bound to organic matters in the water or in shed cells, has been used to monitor the presence of aquatic animals. Using an eDNA-based method, we estimated the presence of the invasive bluegill sunfish, Lepomis macrochirus, in 70 ponds located in seven locales on the Japanese mainland and on surrounding islands. We quantified the concentration of DNA copies in a 1 L water sample using quantitative real-time polymerase chain reaction (qPCR) with a primer/probe set. In addition, we visually observed the bluegill presence in the ponds from the shoreline. We detected bluegill eDNA in all the ponds where bluegills were observed visually and some where bluegills were not observed. Bluegills were also less prevalent on the islands than the mainland, likely owing to limited dispersal and introduction by humans. Our eDNA method simply and rapidly detects the presence of this invasive fish species with less disturbance to the environment during field surveys than traditional methods.  相似文献   

19.
1. To evaluate the effect of habitat patch heterogeneity on abundance and growth of macroinvertebrates in arctic lakes, macroinvertebrate abundance, individual biomass, and potential food resources were studied in three patch types in two arctic lakes on the Alaskan North Slope near the Toolik Lake Field Station. An experiment was conducted to determine which sediment patch type supported higher growth rates for Chironomus sp., a commonly occurring macroinvertebrate. 2. Potential organic matter (OM) resources were significantly higher in both rock and macrophyte patches than in open‐mud patches. Total macroinvertebrate densities in both lakes were highest in rock patches, intermediate in macrophytes and lowest in open‐mud. The open‐mud patches also had lower species richness compared with other patch types. Additionally, individual biomass for one clam species and two chironomid species was significantly greater in rock patches than in open‐mud. 3. In a laboratory experiment, Chironomus showed two to three times greater mass increase in sediments from macrophyte and rock patches than from open‐mud patches. Rock and macrophyte experimental sediments had at least 1.5 × the percentage OM as open‐mud sediments. 4. Chlorophyll a appeared to be the best predictor for invertebrate abundances across all patch types measured, whereas OM content appeared to be the variable most closely associated with Chironomus growth. 5. Our results combined with previous studies show that the relationships between macroinvertebrate community structure, individual growth, and habitat heterogeneity are complex, reflecting the interaction of multiple resources, and biotic interactions, such as the presence or absence of a selective vertebrate predator (lake trout, Salvelinus namaycush).  相似文献   

20.
B. K. Orr  V. H. Resh 《Oecologia》1992,90(4):474-482
Summary The surface cover produced by aquatic macrophytes is the primary habitat for immature stages (eggs, larvae, and pupae) ofAnopheles mosquitoes. We hypothesized that both the abundance of immatureAnopheles and the recruitment ofAnopheles (from oviposition or larval movement) is positively related to the amount of surface cover present. Field sampling documented a positive correlation betweenAnopheles egg and larval abundance and the amount of vegetative cover present (measured as the number of emergent stems m-2) in monospecific beds ofMyriophyllum aquaticum in a California, USA, wetland. Experiments conducted to determine the influence ofMyriophyllum stem density on selection of oviposition sites by adultAnopheles females clearly indicate that oviposition rate (eggs m-2 d-1) increases as stem density increases from 0 to 1000 stems m-2 but decreases as stem density approaches 2000 stems m-2. In selecting microhabitats,Anopheles larvae preferred patches with high stem densities over patches with few or no plant stems; this preference correlates with differences in habitat quality (e.g., increased refuge from predation and enriched food sources). The optimal habitat for anopheline mosquitoes apparently occurs above a threshold plant density of approximately 500Myriophyllum stems m-2. Habitat heterogeneity produced by variability in the distribution and structure of aquatic vegetation strongly influences the local distribution and abundance of anopheline mosquitoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号