首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Polygynous parasitoid males may be limited by the amount of sperm they can transmit to females, which in turn may become sperm limited. In this study, I tested the effect of male mating history on copula duration, female fecundity, and offspring sex ratio, and the likelihood that females will have multiple mates, in the gregarious parasitoid Cephalonomia hyalinipennis Ashmead (Hymenoptera: Bethylidae: Epyrinae), a likely candidate for sperm depletion due to its local mate competition system. Males were eager to mate with the seven females presented in rapid succession. Copula duration did not differ with male mating history, but latency before a first mating was significantly longer than before consecutive matings. Male mating history had no bearing on female fecundity (number of offspring), but significantly influenced offspring sex ratio. The last female to mate with a given male produced significantly more male offspring than the first one, and eventually became sperm depleted. In contrast, the offspring sex ratio of first‐mated females was female biased, denoting a high degree of sex allocation control. Once‐mated females, whether sperm‐depleted or not, accepted a second mating after a period of oviposition. Sperm‐depleted females resumed production of fertilized eggs after a second mating. Young, recently mated females also accepted a second mating, but extended in‐copula courtship was observed. Carrying out multiple matings in this species thus seems to reduce the cost of being constrained to produce only haploid males after accepting copulation with a sperm‐depleted male. I discuss the reproductive fitness costs that females experience when mating solely with their sibling males and the reproductive fitness gain of males that persist in mating, even when almost sperm‐depleted. Behavioural observations support the hypothesis that females monitor their sperm stock. It is concluded that C. hyalinipennis is a species with a partial local mating system.  相似文献   

2.
Abstract. The number of spermatozoa that a male transfers to the female during copulation is a main component of its individual fitness, especially under the pressure of sperm competition. This paper presents experimental results on the direct relationship between the male's sperm investment and its paternity in the offspring of dual-mated females. An eye colour mutant (red-eyed) is used to study the differences in the mating and fertilization abilities of males through observation of single and dual matings of females in Anisopteromalus calandrae (Hymenoptera, Chalcidoidea, Pteromalidae). Experimentally, females accept dual matings only in the simultaneous presence of two males. Counts of spermatozoa in the seminal vesicles of virgin males show that red-eyed males have more sperm than wild-eyed ones (approximately 1.46-fold greater). Red- and wild-eyed males do not differ in their mating behaviour and females mate indifferently with both phenotypes. Compared with once-mated females, double-mated females increase neither sperm storage nor lifetime fecundity, and the offspring sex ratio is female-biased. Females mated with two males of different phenotypes produce offspring of both phenotypes throughout their reproductive life, whatever the order of males in the copulation sequence. Any mating pattern appears to produce more red- than wild-eyed offspring (between 1.45- and 1.88-fold greater). Thus, proportions of offspring of each male match the proportions of their sperm potential. With no preference of female for red-eye or wild-eye males being demonstrated at either behavioural or physiological levels, a male's investment in sperm quantity appears to determine its individual reproductive success, at least in these experimental conditions.  相似文献   

3.
Male soapberry bugs (Jadera haematoloma)face severe mating competition at the northern edge of their range due to male-biased adult sex ratios. Copulations lasting up to 11 days may serve a mate guarding function (encompassing four or more ovipositions), but copulation duration is highly variable, with some pairings lasting as little as 10 min. Data were gathered to describe factors that influence the reproductive costs and benefits of prolonged copulation. Estimated copulation durations (mean ± SD) were 20 ± 23 h in the lab and 50 ± 8 h in the field and were only weakly affected by sex ratio. Females mated for 5 min produced as many fertile eggs as those mated for 600 min laid; they became depleted of fertile sperm after about 25 days. In twicemated females, the first male's paternity was reduced by about 60%, and all females (N = 13) whose mates were removed experimentally mated again within an average of 6 min. The outcome of sperm competition on a perclutch basis was not highly predictable. The possibility of increased sperm displacement in longer copulations was not tested. Males often guarded females during oviposition and successfully defended them from intruding single males by recopulating. Such intrusions occurred in the majority of oviposition attempts observed in nature. Even though most females mated promiscuously, in a focal aggregation with a mean sex ratio of 2.2 ± 0.4 males/female, the interval between matings by males was commonly several days. Males appeared to respond facultatively to several aspects of the distribution and availability of females. The intensities of mating competition and sperm competition indicate that monogamous mate guarding should be favored over nonguarding in nature. Unpredicted brief. pairings may result from assessment by males of female reproductive value or of their own physical condition, or from female resistance.  相似文献   

4.
Abiotic and biotic factors affect life‐history traits and lead populations to exhibit different behavioural strategies. Due to the direct link between their behaviour and fitness, parasitoid females have often been used to test the theories explaining these differences. In male parasitoids, however, such investigations are vastly understudied, although their mating strategy directly determines their fitness. In this study, we compared the pattern of life history traits and the mating strategy of males in two populations of the Drosophila parasitoid Asobara tabida, exposed to different biotic and abiotic conditions, with the major difference being that one of them was recently exposed to strong competition with the dominant competitor Leptopilina boulardi after recent climate change, the other population being settled in a location where L. boulardi has not been recorded. The results showed that individuals of both populations have a different reproductive strategy: in one population, females produced a more female‐biased sex ratio, while males accumulated more lipids during their larval development, invested more energy in reproduction and decreased their locomotor activity, suggesting a higher proportion of matings on their emergence patch, all of these factors being possibly linked to the new competition pressure. In both populations, mating without sperm transfer may persist for several days after males become sperm‐depleted, and may be more frequent than mating with sperm transfer over their whole lifespan. This point is discussed from an evolutionary point of view.  相似文献   

5.
Characterizing the mating systems of long‐lived, economically important Pacific rockfishes comprising the viviparous Sebastes species flock is crucial for their conservation. However, direct assignment of mating success to sires is precluded by open, offshore populations and high female fecundity. We addressed this challenge by integrating paternity‐assigned mating success of females with the adult sex ratio (ASR) of the population, male evolutionary responses to receptive females, and reproductive life history traits—in the framework of sexual selection theory—to assess the mating system of Sebastes melanops. Microsatellite parentage analysis of 17 pregnant females, 1,256 of their progeny, and 106 adults from the population yielded one to four sires per brood, a mean of two sires, and a female mate frequency distribution with a truncated normal (random) pattern. The 11 multiple paternity broods all contained higher median allele richness than the six single paternity broods (Wilcoxon test: W = 0, p < .001), despite similar levels of average heterozygosity. By sampling sperm and alleles from different males, polyandrous females gain opportunities to enhance their sperm supply and to lower the cost of mating with genetically incompatible males through reproductive compensation. A mean of two mates per mated female with a variance of one, an ASR = 1.2 females per male, and the expected population mean of 2.4 mates for mated males (and the estimated 35 unavailable sires), fits polygamous male mate frequency distributions that distinguish polygynandry and polyandrogyny mating systems, that is, variations of polygamy, but not polyandry. Inference for polygamy is consistent with weak premating sexual selection on males, expected in mid‐water, schooling S. melanops, owing to polyandrous mating, moderately aggregated receptive females, an even ASR, and no territories and nests used for reproduction. Each of these characteristics facilitates more mating males and erodes conspicuous sexual dimorphism. Evaluation of male evolutionary responses of demersal congeners that express reproductively territorial behavior revealed they have more potential mechanisms for producing premating sexual selection, greater variation in reproductive success, and a reduced breeding effective population size of adults and annual effective size of a cohort, compared to S. melanops modeled with two mates per adult. Such divergence in behavior and mating system by territorial species may differentially lower their per capita birth rates, subsequent population growth, and slow their recovery from exploitation.  相似文献   

6.
1. The reproductive fitness of a parasitoid depends on its mating and ovipositing success. Virgin haplodiploid females can reproduce, but produce only males, and may diminish fitness by producing more male offspring than required. Therefore, females must decide on whether to mate or oviposit first. 2. This study was conducted to assess the mating versus ovipositing decision and its impact on the reproductive fitness of Diaeretiella rapae (Hymenoptera: Aphididae), an endoparasitoid of the cabbage aphid Brevicoryne brassicae (Hemiptera: Aphididae). 3. When newly emerged females were given a choice between mating and ovipositing, about 62% of D. rapae females preferred to mate before ovipositing. Those females who oviposited before mating parasitised only 10% of the available aphids. After mating, females superparasitised their hosts with fertilised eggs, which resulted in a highly female‐biased sex ratio in the offspring. 4. Mating success was very high (91%) in the presence of hosts (cabbage aphid nymphs) compared with that in the absence of aphids. However, mating success was not influenced by the quality (size) of the hosts present in the mating arena, despite a parasitoid preference for larger hosts during oviposition. The time between pairing and mating was also shorter in the presence of host aphids. The mean number of aphids parasitised and the parasitism rate were significantly greater after mating.  相似文献   

7.
A large body size is considered to be advantageous to the reproductive success of females as a result of several factors, such as the allocation of more resources to reproduction and the efficient management of sperm transferred by males. In the present study, the effects of female body size, female mating status and additional food availability on fecundity and the offspring sex ratio are investigated in the parasitoid wasp Anisopteromalus calandrae Howard (Hymenoptera: Pteromalidae). Because of haplodiploid sex determination, females must fertilize eggs to produce female offspring but not to produce male offspring. As predicted, female fecundity and the number of female offspring are positively correlated with body size. However, although the volume of the spermatheca increases with female body size, the amount of sperm stored in the spermatheca is relatively constant, irrespective of body size. Consequently, larger females produce a greater proportion of male offspring, especially at the end of the oviposition sequence, suggesting that larger females that possess more resources for reproduction and produce a larger number of offspring are more likely to suffer sperm depletion. The results of the present study also show that mated females have an increased fecundity compared with virgin females, although the opportunity to feed on honey along with host feeding has no impact upon fecundity or the sex ratio.  相似文献   

8.
1. Multiple male copulations can have detrimental effects on female fitness due to sperm limitation. 2. Monandrous Naryciinae females are immobile while the males are short‐lived and do not feed. Multiple male mating is therefore expected to lead to sperm limitation in females. Sperm limitation and male limitation are hypothesised as causes of the repeated evolution of parthenogenetic reproduction in the Psychidae. 3. In this study, the effects of multiple male mating on female reproduction are investigated in several species of Naryciinae by allowing males multiple copulations. The results for two species, Siederia listerella and Dahlica lichenella, are compared. The sex ratios of 53 natural populations are examined for indications of male limitation. 4. Previous copulations by the male increased the female's risk of remaining unfertilised. However, contrary to expectations, those unfertilised females were capable of successful re‐mating. 5. In S. listerella, the number of previous copulations of males negatively influenced female fitness. Females produced 30% fewer offspring if they mated with a previously mated male. In D. lichenella, the older the male and the lower its number of total lifetime copulations, the higher the female's reproductive success. 6. Only a fraction of the investigated populations had a female‐skewed sex ratio, but differences in development time between males and females could lead to reproductive asynchrony. 7. In conclusion, male mating history did not lead to strong sperm limitation in Naryciinae as had been suggested by their life history.  相似文献   

9.
In haplodiploid organisms, unmated or sperm depleted females are “constrained” to produce only male progeny. If such constrained females reproduce, the population sex ratio will shift toward males and unconstrained females will be selected to produce more females. Assuming that a female's own time spent constrained is an index of the population-wide level of constrained oviposition, and that constrained and unconstrained females reproduce at the same rate, the proportion of sons that females produce when unconstrained should decrease with increasing time spent constrained. Alternatively, if females cannot measure time spent constrained or if time spent constrained is not an index to the level of constrained oviposition in the population, the proportion of sons among progeny produced when unconstrained should not depend upon time spent constrained and should be female biased to an extent depending upon the average time spent constrained over evolutionary time. To test these predictions, we manipulated the amount of time spent virgin in the parasitoid wasp Aphelinus asychis Walker (Hymenoptera: Aphelinidae) and measured the number of males and females among progeny produced before and after mating. First, we found no interaction between age and age at mating in their effect on fecundity, which suggests that mating does not change fecundity. Second, we found that females mated at 8 days and 15 days produced equal sex ratios after mating but these were slightly more female biased than the sex ratios of females mated at 1 day. This observed “step response” suggests that females may perceive time from emergence to mating as a discrete rather than a continuous variable (i.e., short versus long), or that females do not perceive time per se but assess their age class (i.e., young versus old) at the time of mating.  相似文献   

10.
Mating usually modifies females' resource allocation pattern, often as a result of conflicts between male and female partners. Can such a switch occur even in the absence of sexual conflicts? We addressed this issue in the haplodiploid spider mite Tetranychus urticae, whose biology and population structure considerably reduce conflicts between males and females over reproductive decisions. Comparing virgin and mated females, we tested the hypothesis that mated females modify their allocation pattern so as to maximize their probability of producing daughters. Mated females produced fewer but larger eggs, resulting in an overall similar reproductive effort but an increased probability of producing daughters, since in this species larger eggs are more likely to be fertilized and thus to become female. Moreover, mated females concentrated their reproduction early in life. Again, this might be a way to produce more daughters, since sperm is more abundant early in life. For virgins, spreading reproductive investment might be a way to save resources to extend life span, thus increasing their probability of encountering a sexual partner. Females with multiple opportunities for mating produced fewer eggs and a less female-biased sex ratio than once-mated females, raising the question of why multiple mating often occurs in this species.  相似文献   

11.
Hymenoptera are haplodiploid insects, consequently sex ratio depends on female's sperm management which itself arises from the reproductive capacity of neighbouring males. To study the influence of ageing on male reproductive potential, laboratory experiments were conducted on Dinarmus basalis (Hymenoptera, Pteromalidae) males, a tropical wasp in which sperm counts are known to constrain sex ratio. Two groups of virgin males were compared: 1-day and 30-days old. Parameters recorded were sperm quantity and viability in seminal vesicles, shape of testis, mating ability in both individual and competitive situations and sperm stored by females after male multiple mating. Older males had twice as much sperm as young males, but their reproductive capacities did not differ. They were able to copulate with 20 successive virgin females in a short period. Sperm stored in spermathecae decreased with female mating order. In competition, old and young males had the same access to females. The difference between old and young males was visible at the level of reproductive tract: young males have functional testis and old males have empty non-functional testis. Spermatozoa are kept viable in male seminal vesicles for long periods. In this species, the reproductive potential of males is not altered by ageing. At the population level this may represent an adaptation for maintaining continuous reserves of sperm at the disposal of females.  相似文献   

12.
《Biological Control》2005,32(2):311-318
Polyandry implies costs (i.e., time, energy, predation risk, etc.) especially in short-lived parasitoid species but females of several hymenopteran parasitoid species, mostly gregarious, do mate with multiple males. Several hypotheses have been proposed to explain the benefits of polyandry but controversy remains, especially in facultative gregarious species that bridge the gap between solitary and gregarious development. In this study, we investigated the possibility that polyandry may bring material benefits to Trichogramma evanescens Westwood (Hymenoptera: Trichogrammatidae) females, a short-lived and facultative gregarious egg parasitoid. Females mated several times with different males both at emergence and throughout their life. No significant difference was found in the offspring sex ratio and the fecundity of multiple mated and single mated females and pre-mating duration increased with the female’s age. The longevity of females did vary significantly with the number of matings but only in the presence of hosts. Female T. evanescens received enough sperm from one mating to allocate an optimal offspring sex ratio and we found no evidence of either nutritional resources or convenience polyandry in this species. Polyandry in facultative gregarious parasitoids might be an adaptive strategy to minimize the risk of mating with males that have already emptied their sperm bank or to accumulate sperm from several partially sperm-depleted males. Polyandry may also increase the probability of non-sib mating in patches exploited by several females.  相似文献   

13.
In mating of the dobsonfly, Protohermes grandis (Thunberg), the male attaches the spermatophore externally to the female genitalia. The spermatophore includes a large gelatinous mass which the female detaches and feeds on after mating. While the female consumes this nuptial food gift, sperm is evacuated from the remaining portion of the spermatophore (sperm package) into her reproductive tract. Under laboratory conditions, mated females maintained receptivity throughout their lifetime, and they remated even on the day following copulation. A single insemination may supply enough sperm, as females mated only once deposited fertile eggs throughout life and, when dissected after death, all females had sperm in the spermatheca. There was a positive correlation between longevity and the number of matings. Lifetime fecundity also increased as mating multiplied. However, the size of eggs and hatchlings was not influenced by the number of matings. It seems that large spermatophore consumption by female P. grandis provides nutrients that increase fitness not in offspring quality, but in their quantity.  相似文献   

14.
  1. The Eastern Grass‐veneer Agriphila aeneociliella (Eversmann) (Lepidoptera: Crambidae) is a serious stem‐feeding pest of wheat crops that has become established in China in recent years. A better understanding of the mating strategy and reproductive performance of A. aeneociliella could improve integrated pest management programmes against this newly established species by disturbing its behaviour and reducing its reproduction potential. Based on ethological and reproductive biological approaches, the mating and reproductive performances of A. aeneociliella were investigated.
  2. Unlike the common nocturnal lepidopterans, the mating rhythm of A. aeneociliella moths showed a marked diurnal pattern. The female courtship rhythm and the mating rhythm reached peaks within the first 2 h after the onset of photocycle.
  3. The mating success rate of monogamous pairs was 55.6%, whereas the male‐biased sex ratio (2♂:1♀) increased the mating rate (72.2%) and the female‐biased ratio (1♂:3♀) led to the lowest mating rate (27.8%).
  4. Both females and males were able to mate twice. The duration of copulation decreased substantially with male mating frequency, whereas, when a previously mated female was paired with a virgin male, fecundity significantly increased. Monogamous couples who mated only once in their lives have the highest hatchability (97.13 ± 0.49%).
  相似文献   

15.
Mate choice may have important consequences for offspring sex ratio and fitness of haplodiploid insects. Mate preference of females of the solitary larval parasitoid Microplitis croceipes (Cresson) (Hymenoptera: Braconidae) for virgin and mated males, and vice versa, and the reproductive consequences (i.e., the sex ratio expressed as the proportion of male offspring) were examined in choice and non‐choice experiments. In addition, the effect of repeated rapid and daily copulation of an individual male on the sex ratio of offspring of the female mates was assessed. Males preferred virgins over mated females, whereas females copulated with a male irrespective of his mating status. In both the rapid and daily copulation assay, females copulating with a male that had copulated five times or more produced a higher sex ratio than females that had copulated with a virgin male. Females that copulated with virgin males once or twice produced a significantly and considerably lower sex ratio than females that first copulated with a sperm‐depleted male followed by a virgin male. This indicates that copulating with a sperm‐depleted male has costs and limits acquisition by the female of sperm from virgin males.  相似文献   

16.
1. Myrmecina nipponica has two types of colonies: a queen colony type, in which the reproductive females are queens and new colonies are made by independent founding, and an intermorphic female colony type, in which reproductive females belong to a wingless intermediate morphology between queen and worker, and where colonies multiply through colonial budding. 2. The mating frequencies of reproductive females in both types indicate monoandry. The relatedness among nestmates in both types was almost 0.75, however relatedness between mother and daughter in intermorphic female colonies was slightly higher than that of queen colonies. 3. The sex ratio (corrected investment female ratio) was 0.70 at the population level, suggesting that the sex ratio is controlled by workers in this species, however the ratio differed greatly between the two types of colonies. Queen colonies (n = 37) had a female‐biased sex ratio of 0.77 while intermorphic female colonies (n = 33) had a ratio of 0.56. 4. Each reproductive intermorphic female was accompanied by an average of 2.9 workers (including virgin intermorphic females) in the colonial budding, and when the investment to those workers was added to the female investment, the sex ratio reached 0.81. 5. The frequency distribution of sex ratio was bimodal, with many colonies producing exclusively males or females, however mean estimated relatedness within colonies was almost 0.75. These data are inconsistent with the genetic variation hypothesis, which is one of the predominant hypotheses accounting for the between‐colony variation in sex ratio.  相似文献   

17.
Chromosomal sex determination and male heterogamety have been thought to seriously impede direct sex ratio control. However, in Pityohyphantes phrygianus, a solitary sheetweb spider with a skewed sex ratio, earlier experimental studies suggested that there are options for female control of offspring sex ratio, if females change their position during the normal mating sequence. Here we show that under natural conditions there is considerable between-female variation in positions, especially after termination of mating. Computer simulations of the orientation of female inner genitalia suggest that sperm are placed in different storage sites depending on the positions adopted. This means that a specific position after mating might potentially influence offspring sex ratio. The variance in offspring sex ratio among females in earlier experiments was binomially distributed, which leads us to conclude that females control the mean sex ratio but do not exercise direct control of the sex of individual offspring.  相似文献   

18.
Sperm stocks in both males and females of the parthenogenetic wasp Eupelmus orientalis were investigated at various points during reproduction and compared to the progeny of females in controlled conditions. One day-old virgin males had approximately 5500 sperm, and from a total of about 1697 sperm transferred per copulation, 21% are stored in the spermathecae by females 24 hours after mating. At the end of the egg-laying period (at least 42 days), 2/5 of the initial amount of sperm remained in this storage organ. This decrease (from approximately 350 to 150) occurred essentially during the first 21 days of egg-laying activity, indicating that the majority of sperm stored were used during this period. Between 21 days and the end of fertile life, the number of sperm remained constant. The mean offspring production throughout reproductive life after one mating was 153, with 56.5% of the daughters laid at the beginning of the laying activity. Sex ratio was entirely female biased during the first 15 days (mean=0.65), then it decreased and became nearly equal after 20 days. Present results propose that females maximize the production of daughters i.e. of inseminated eggs until the 20th day and after this time lay as many daughters and sons despite their still having stored sperm. Physiological constraints due to ageing are proposed to explain this phenomenon.  相似文献   

19.
During the spring emergence of red‐sided garter snakes (Thamnophis sirtalis parietalis) in Manitoba, Canada, the operational sex ratio is strongly skewed towards males, who scramble to locate and court newly emerged females. A high frequency of multiple paternity litters suggests that the females are promiscuous; the gelatinous copulatory plugs (CPs) deposited by males may confer fitness benefits via passive mate guarding. Because precopulatory female choice is limited in large mating aggregations, sexual conflict may place a premium on preventing females from ejecting male sperm. In snakes, sperm are produced in the testes and delivered through the ductus deferens, and the CP is thought to be produced by the renal sexual segment and conveyed through the ureter. We manipulated the delivery of the two fluids separately by surgically ligating the ducts. Ureter‐ligated males did not produce a CP, causing their sperm to leak out of the female's cloaca immediately after copulation. Contrary to previous suggestions, histology revealed sperm distributed throughout the CP. Thus, the CP may function as a spermatophore: the protein matrix contains the sperm, which are liberated gradually as the plug dissolves. The likelihood of a male depositing a CP fell significantly after his second mating, perhaps limiting his reproductive success. These results challenge the hypothesis that passive mate guarding is the primary function of the CP in T. sirtalis parietalis. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 893–907.  相似文献   

20.
In Polistes paper wasps, haploid early males can mate with early emerging females and leave viable offspring. In contrast, diploid early males are eventually sterile because they contribute triploid offspring via diploid sperm. Clarifying the ploidy of early males is important for determining whether early male production is a reproductive strategy for the species. We examined the mating behavior and the ploidy of early males in the Japanese paper wasp, Polistes rothneyi iwatai van der Vecht. Thirteen early males from four colonies were all diploid. Two of the nine early males (22.2%) attempted to mate with females, but only one individual (11.1%) was successful (the female's spermatheca contained spermatozoa). These results suggest that although most early males of P. rothneyi iwatai do not produce offspring, their mating may be linked to the occasional production of triploid females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号