首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study deals with neurohistological analysis of the common nerve plexus of the body wall of the polychaete Nephthys ciliata. Cellular composition and interneuronal relationships in subepidermal and intramuscular areas of the nerve plexus are demonstrated. Morphological data are presented on a possible origin of typical associative and, presumably, motor neurons located outside the abdominal ganglion on the basis of differentiating primary sensory bipolars. Axo-axonal, axo-dendritic, and axo-somatic interneuronal contacts are shown in the nerve plexus. A characteristic feature of the studied peripheral nerve plexus of the body wall of the Nephthys ciliata is emphasized: the sufficiently intensive development of associative neuronal population. This provides a structural basis for peripheral integration of nervous processes in the central nervous system of the whole animal. Small groups of sensory and associative neurons described in the present study also seem to contribute to a relative autonomization of the peripheral part of the central nervous system of Nephthys ciliata. This can also be promoted by single suggested motor neurons of the plexus. The studied nerve plexus is actually deprived of typical associative-motor neurons that are so characteristic of the abdominal ganglion of polychaetes, oligochaetes, and leeches.  相似文献   

2.
Based on study of isolated neurons of molluscs Lymnaea stagnalis, elementary mechanisms of motility of living neurons have been analyzed. With aid of these studies, an attempt is made at explaining mechanisms of the cellular morphogenetic processes of evolution of simple nervous systems: exit of neuroepithelial cells from the layer of external epithelium, transformation of sensory bipolar cells into the associative ones, migration of neurons, formation of diffuse plexus and its conversion into the plexus-ganglion system, regularities of formation of ganglia and synganglia. Use of the culture of dissociated neurons is characterized as a novel direction of evolutionary neuromorphology.  相似文献   

3.
The constituent elements of the gills of Aplysia kurodai and A. juliana were examined for the presence of biogenic amines using histochemical, immunocytochemical, and HPLC techniques. Aminergic elements were revealed by glyoxylic acid-induced fluorescence in the branchial nerve, branchial ganglion, branchial vessels, and pinnules in both species. Three types of fluorescent cells were found in the neural plexus of the gill in each species. Two of them might be sensory neurons. Although HPLC analysis showed the presence of serotonin and dopamine in all gill structures including fluorescent neural elements, there were regional differences in concentrations of the monoamines. It was noted in the pinnules that there was a much higher concentration of dopamine than serotonin. Serotonin immunocytochemistry revealed neural processes which were immunoreactive to antiserotonin antibody, but serotonin immunoreactivity could not be found in a population of branchioganglionic neuron (BGN) somata. Serotonergic elements in the ganglion may be processes of the central ganglion, while dopaminergic elements may be processes of neurons in the neural plexus, located beyond the branchial ganglion. BGNs were activated by bath-applied dopamine and serotonin. These results suggest that dopaminergic sensory inputs from the neural plexus and serotonergic descending inputs from the abdominal ganglion may be among the inputs received by BGNs. It was found that serotonin depressed excitatory junctional potentials in muscle cells of the efferent branchial vessel, which were induced by an identified neuron of the abdominal ganglion. The aminergic cellular organization of the gill may involve serotonergic presynaptic-inhibitory fibers arising from the abdominal ganglion.  相似文献   

4.
The epidermis of the doliolaria larva of the Florometra serratissima is differentiated into distinct structures including an apical organ, adhesive pit, ganglion, ciliary bands, nerve plexus, and vestibular invagination. All these structures possess unique cell-types, suggesting that they are functionally specialized in the larva, except the vestibular invagination that becomes the postmetamorphic stomodeum. The epidermis also contains yellow cells, amoeboid-like cells, and secretory cells. The enteric sac, hydrocoel, axocoel, and somatocoels have differentiated but are probably not functional in the doliolaria stage. Mesenchymal cells, around the enteric sac and coeloms, appear to be actively secreting the endoskeleton and connective tissue fibers. The nervous system is composed of a nerve plexus, ganglion, and sensory receptor cells in the apical organ. The apical organ is a larval specialization of the anterior end; the ganglion is located in the base of the epidermis at the anterior dorsal end of the larva. The nerve plexus underlies most of the epidermis, although it is more prominent in the anterior region. Here, processes from sensory receptor cells of the apical organ, as well as those from nerve cells, contribute to the plexus. These processes contain one or a combination of organelles including vesicles, vacuoles, microtubules, and mitochondria. The configuration of glyoxylic acid-induced fluorescence, revealing catecholamine activity, correlates to the apical organ, nerve cells, and nerve plexus. Morphological evidence suggests that the nervous system may function in initiation and control of settlement, attachment, and metamorphosis. The crinoid larval nervous system is discussed and compared to that found in other larval echinoderms.  相似文献   

5.
Of the several types of polarized cells, the neuron is one of the most dramatic examples. It extends two distinctive processes, axon and dendrite. Polarization in neurons enables the two processes to play their functionally different roles, sending and receiving electrical signals in a vectorial fashion. While a catalog of structural, molecular, and functional differences between axon and dendrite is accumulating, the mechanisms involved in establishment of neuronal polarity are not well understood. Neuronal polarity formation begins with the elongation of one process as an axon in a symmetric cell phase. In this review, we describe recent advances in the understanding of several cellular events in the early development of axon and dendrite. We also discuss the involvement of the Rho family small GTPases, their upstream and downstream molecules, and collapsin response mediator protein-2 (CRMP-2) in the regulation of neuronal polarity.  相似文献   

6.
The neuronal connections of the tritocerebral commissures of Periplaneta americana were studied in the brain-suboesophageal ganglion complex and the stomatogastric nervous system by means of heavy metal iontophoresis through cut nerve ends followed by silver intensification. The tritocerebral commissure 1 (Tc1) contains mainly the processes of the subpharyngeal nerve (Spn) whose neurons are located in both tritocerebral lobes and in the frontal ganglion. Some neurons of the frontal ganglion project through the Tc1 to the contralateral tritocerebrum. A few fibers in this commissure were observed projecting to the protocerebrum and the suboesophageal ganglion. There are tritocerebral neurons which pass through the Tc1 or the tritocerebral commissure 2 (Tc2) and extend on into the stomatogastric nervous system. One axon of a descending gaint neuron appears in the Tc2. This neuron lies in the tritocerebrum and connects the brain to the contralateral side of the ventral nerve cord. In addition, sensory fibers of the labral nerve (Ln) traverse both commissures to the opposite tritocerebrum. The anatomical and physiological relevance of the identified neuronal pathways is discussed. © 1995 Wiley-Liss, Inc.  相似文献   

7.
A Cell Culture Model for Androgen Effects in Motor Neurons   总被引:8,自引:2,他引:6  
Abstract: Androgens are known to alter the morphology, survival, and axonal regeneration of lower motor neurons in vivo. To understand better the molecular mechanisms of androgen action in neurons, we created a model system by stably expressing the human androgen receptor (AR) in motor neuron hybrid cells. Motor neuron hybrid cells express markers consistent with anterior horn cells and can be differentiated into a neuronal phenotype. When differentiated in the presence of androgen, AR-expressing cells, but not control cells, exhibit a dose-dependent change in morphology: androgen-treated cells develop larger cell bodies and broader neuritic processes while continuing to express neuronal markers. In addition, androgen promotes the survival of AR-expressing cells, but not control cells, under low-serum conditions. Our results demonstrate a direct trophic effect of androgens on lower motor neurons, mediated through the AR expressed in this population of neurons.  相似文献   

8.
Regulation of peptide neurotransmitter metabolism was examined in dissociated cell cultures of neonatal rat sympathetic and sensory ganglia. Previous studies have shown that pineal gland conditioned medium (PCM) influences substance P (SP) and somatostatin (SS) metabolism in sympathetic neurons in vitro. The present study examines mechanisms mediating these effects, and compares the actions of PCM on sympathetic and sensory neurons. PCM treatment increased SP levels in a dose-dependent manner without altering SS content of sympathetic neurons cultured in the presence of ganglion non-neuronal cells. Conversely, treatment of pure sympathetic neuron cultures resulted in a dose-dependent increase in SS, while SP was virtually undetectable at all doses. By contrast, dorsal root ganglion, trigeminal ganglion, and nondose ganglion sensory neurons contained SP both in the presence and absence of ganglion non-neuronal cells. Moreover, in each of these neuronal populations treatment with PCM increased SP levels both in the presence and in the absence of ganglion non-neuronal cells. These observations suggest that ganglion non-neuronal cells are necessary for sympathetic but not sensory neuron expression of SP. Moreover, PCM apparently stimulates SP in neurons which already contain the peptide, but the factor cannot foster de novo expression of the phenotype. PCM also influenced other transmitter traits in sympathetic neurons, suggesting linkage between mechanisms regulating peptides and other transmitters. In cultures containing both sympathetic neurons and non-neuronal cells, PCM treatment increased cholineacetyltransferase (CHAC) activity as well as SP, and decreased tyrosine hydroxylase (TOH) activity. By contrast, PCM treatment of pure sympathetic neuron cultures led to parallel increases in SS and TOH activity with negligible levels of SP and CHAC. These observations suggest that in sympathetic neurons, SS may be linked with noradrenergic expression, while SP is associated with cholinergic development, although more data are required to confirm this relationship. Moreover, there may be a reciprocal relationship between SP and SS expression by sympathetic neurons analogous to previous observations regarding cholinergic-noradrenergic expression (P. H. Patterson and L. L. Y. Chun, Proc. Natl. Acad. Sci. USA 71, 3607-3610, 1974; Dev. Biol. 56, 263-280, 1977). Consequently, neurotransmitter phenotypic expression is a complex process in which the environment regulates a balance among multiple transmitters.  相似文献   

9.
The shape of the dendritic arbor is one of the criteria of neuron classification and reflects functional specialization of particular classes of neurons. The development of a proper dendritic branching pattern strongly relies on interactions between the extracellular environment and intracellular processes responsible for dendrite growth and stability. We previously showed that mammalian target of rapamycin (mTOR) kinase is crucial for this process. In this work, we performed a screen for modifiers of dendritic growth in hippocampal neurons, the expression of which is potentially regulated by mTOR. As a result, we identified Cyr61, an angiogenic factor with unknown neuronal function, as a novel regulator of dendritic growth, which controls dendritic growth in a β1-integrin-dependent manner.  相似文献   

10.
microRNA‐9 (miR‐9) is highly expressed in the nervous system across species and plays essential roles in neurogenesis and axon growth; however, little is known about the mechanisms that link miR‐9 with dendrite growth. Using an in vivo model of Drosophila class I dendrite arborization (da) neurons, we show that miR‐9a, a Drosophila homolog of mammalian miR‐9, downregulates the cadherin protein Flamingo (Fmi) thereby attenuating dendrite development in a non‐cell autonomous manner. In miR‐9a knockout mutants, the dendrite length of a sensory neuron ddaE was significantly increased. Intriguingly, miR‐9a is specifically expressed in epithelial cells but not in neurons, thus the expression of epithelial but not neuronal Fmi is greatly elevated in miR‐9a mutants. In contrast, overexpression of Fmi in the neuron resulted in a reduction in dendrite growth, suggesting that neuronal Fmi plays a suppressive role in dendrite growth, and that increased epithelial Fmi might promote dendrite growth by competitively binding to neuronal Fmi. Fmi has been proposed as a G protein‐coupled receptor (GPCR), we find that neuronal G protein Gαq (Gq), but not Go, may function downstream of Fmi to negatively regulate dendrite growth. Taken together, our results reveal a novel function of miR‐9a in dendrite morphogenesis. Moreover, we suggest that Gq might mediate the intercellular signal of Fmi in neurons to suppress dendrite growth. Our findings provide novel insights into the complex regulatory mechanisms of microRNAs in dendrite development, and further reveal the interplay between the different components of Fmi, functioning in cadherin adhesion and GPCR signalling. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 225–237, 2016  相似文献   

11.
Summary Antisera to the sequence Arg-Phe-amide (RF-amide) have a high affinity to the nervous system of fixed hydroid polyps. Whole-mount incubations of several Hydra species with RFamide antisera visualize the three-dimensional structure of an ectodermal nervous system in the hypostome, tentacles, gastric region and peduncle. In the hypostome of Hydra attenuata a ganglion-like structure occurs, consisting of numerous sensory cells located in a region around the mouth opening and a dense plexus of processes which project mostly radially towards the bases of the tentacles. In Hydra oligactis an ectodermal nerve ring was observed lying at the border of hypostome and tentacle bases. This nerve ring consists of a few large ganglion cells with thick processes forming a circle around the hypostome. This is the first direct demonstration of a nerve ring in a hydroid polyp.Incubation of Hydractinia echinata gastrozooids with RFamide antisera visualizes an extremly dense plexus of neuronal processes in body and head regions. A ring of sensory cells around the mouth opening is the first group of neurons to show RFamide immunoreactivity during the development of a primary polyp. In gonozooids the oocytes and spermatophores are covered with strongly immunoreactive neurons.All examples of whole-mount incubations with RF-amide antisera clearly show that hydroid polyps have by no means a diffuse nerve net, as is often believed, and that neuronal centralization and plexus formation are common in these animals. The examples also show that treatment of intact fixed animals with RFamide antisera is a useful technique to study the anatomy or development of a principal portion of the hydroid nervous system.  相似文献   

12.
Hearing loss in mammals is irreversible because cochlear neurons and hair cells do not regenerate. To determine whether we could replace neurons lost to primary neuronal degeneration, we injected EYFP‐expressing embryonic stem cell–derived mouse neural progenitor cells into the cochlear nerve trunk in immunosuppressed animals 1 week after destroying the cochlear nerve (spiral ganglion) cells while leaving hair cells intact by ouabain application to the round window at the base of the cochlea in gerbils. At 3 days post transplantation, small grafts were seen that expressed endogenous EYFP and could be immunolabeled for neuron‐specific markers. Twelve days after transplantation, the grafts had neurons that extended processes from the nerve core toward the denervated organ of Corti. By 64–98 days, the grafts had sent out abundant processes that occupied a significant portion of the space formerly occupied by the cochlear nerve. The neurites grew in fasciculating bundles projecting through Rosenthal's canal, the former site of spiral ganglion cells, into the osseous spiral lamina and ultimately into the organ of Corti, where they contacted hair cells. Neuronal counts showed a significant increase in neuronal processes near the sensory epithelium, compared to animals that were denervated without subsequent stem cell transplantation. The regeneration of these neurons shows that neurons differentiated from stem cells have the capacity to grow to a specific target in an animal model of neuronal degeneration. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

13.
Insects possess two types of sensory neurons: ciliated type I sensory neurons that innervate external sensory organs and chordotonal organs, and type II sensory neurons that form a subepidermal plexus or innervate stretch receptors. Among stretch receptors, a dorsel longitudinal stretch receptor is highly conserved in insects, being found in all insect orders investigated. Here we describe the topology and anatomical structure of this receptor in the fruit fly embryo and larva using transmission electron microscopy and single cell staining for fluorescence microscopy. The receptor is composed of the dorsal bipolar dendrite neuron, which arises from an archetypal cell lineage, its sister glial cell and the peripheral glial cell accompanying the nerve. The neuron is situated among the muscles in the dorsal body wall on the intersegmental nerve. Its two dendrites stretch the length of the segment to the segmental folds. The neuron is wrapped by both glial cells and surrounded by a common basal lamina, which fans out at the dendritic tips to attach them to the epidermal cells at the segmental borders.  相似文献   

14.
The shape of the dendritic arbor determines the total synaptic input a neuron can receive 1-3, and influences the types and distribution of these inputs 4-6. Altered patterns of dendritic growth and plasticity are associated with impaired neurobehavioral function in experimental models 7, and are thought to contribute to clinical symptoms observed in both neurodevelopmental disorders 8-10 and neurodegenerative diseases 11-13. Such observations underscore the functional importance of precisely regulating dendritic morphology, and suggest that identifying mechanisms that control dendritic growth will not only advance understanding of how neuronal connectivity is regulated during normal development, but may also provide insight on novel therapeutic strategies for diverse neurological diseases.Mechanistic studies of dendritic growth would be greatly facilitated by the availability of a model system that allows neurons to be experimentally switched from a state in which they do not extend dendrites to one in which they elaborate a dendritic arbor comparable to that of their in vivo counterparts. Primary cultures of sympathetic neurons dissociated from the superior cervical ganglia (SCG) of perinatal rodents provide such a model. When cultured in defined medium in the absence of serum and ganglionic glial cells, sympathetic neurons extend a single process which is axonal, and this unipolar state persists for weeks to months in culture 14,15. However, the addition of either bone morphogenetic protein-7 (BMP-7) 16,17 or Matrigel 18 to the culture medium triggers these neurons to extend multiple processes that meet the morphologic, biochemical and functional criteria for dendrites. Sympathetic neurons dissociated from the SCG of perinatal rodents and grown under defined conditions are a homogenous population of neurons 19 that respond uniformly to the dendrite-promoting activity of Matrigel, BMP-7 and other BMPs of the decapentaplegic (dpp) and 60A subfamilies 17,18,20,21. Importantly, Matrigel- and BMP-induced dendrite formation occurs in the absence of changes in cell survival or axonal growth 17,18.Here, we describe how to set up dissociated cultures of sympathetic neurons derived from the SCG of perinatal rats so that they are responsive to the selective dendrite-promoting activity of Matrigel or BMPs.  相似文献   

15.
16.
17.
Due to the tissue dynamics of hydra, every neuron is constantly changing its location within the animal. At the same time specific subsets of neurons defined by morphological or immunological criteria maintain their particular spatial distributions, suggesting that neurons switch their phenotype as they change their location. A position-dependent switch in neuropeptide expression has been demonstrated. The possibility that ganglion cells of the body column are converted into epidermal sensory cells of the head was examined using a monoclonal antibody, TS33, whose binding is restricted to a subset of epidermal sensory cells of the hypostome, the apical end of the head. When animals devoid of interstitial cells, which are the nerve cell precursors, were decapitated and allowed to regenerate, they formed TS33+ epidermal sensory cells. As this latter cell type is not found in the body column, and the interstitial cell-free animals contained only epithelial cells and ganglion cells in the part of the ectoderm that formed the head during regeneration, the TS33+ epidermal sensory cells most likely arose from the TS33- ganglion cells. The observation of epidermal sensory cells labeled with both TS33 and TS26, a monoclonal antibody that binds to ganglion cells, in regenerating and normal heads provides further support. The double-labeled cells are probably in transition from a ganglion cell to an epidermal sensory cell. These results provide a second example of position-dependent changes in neuron phenotype, and suggest that the differentiated state of a neuron in hydra is only metastable with regard to phenotype.  相似文献   

18.
We studied the responses of neurons of the extrastriate cortical area 21b of the cat to changes in orientation of the movements of visual stimuli within the receptive field (RF) of the neuron under study. Our experiments demonstrated that 24 of 108 cells (22%) responded differentially to a certain extent to orientation of the movements of visual stimuli. As a whole, neurons of the area 21b did not demonstrate fine tuning on the optimum angle of orientation. In many cases, neuronal responses to different orientations of the movement of visual stimulus depended significantly on specific parameters of this stimulus (its shape, dimensions, and contrast). Some directionally sensitive neurons responded to a change in orientation of the movement of visual stimuli by modification of the index of directionality. We also studied spatial organization of the RF of neurons with the presentation of stationary visual stimuli. Comparison of the neuronal responses to a change in orientation of the movements of stimuli and to presentation of stationary stimuli showed that the correlation between the orientation sensitivity of the neuron under study and the stationary functional organization of its RF was insignificant. We hypothesize that inhibitory processes and subthreshold influences from a space surrounding the RF play a special role in the formation of the neuronal responses generated in the associative visual cortical regions to visual stimulation.  相似文献   

19.
A group of club-shaped sensilla called clavate hairs, located on the cercus of crickets (Acheta domesticus), are part of a specialized sensory system which monitors the orientation of a cricket with respect to the earth's gravitational field. The clavate hairs occur in rows which run proximodistally on the medial aspect of the cercus and each hair can be identified by specifying which row a hair is in and what position it is in within the row. The array of hairs is constant from individual to individual, and thus each hair can be identified in each specimen. The soma of a single bipolar sensory neuron is located in the integument below each hair; its dendrite projects into the hair and its axon projects to a well-defined area of the abdominal ganglion called the cercal glomerulus. All of the neurons within a row project to a particular area of the cercal glomerulus and different rows project to different areas within the glomerulus. Within a row neurons project to slightly different parts of the target area for that row. Thus a highly ordered projection pattern is produced which is tentatively called somatotopic. The development of the first clavate neuron to appear was examined from the first instar to the adult instar. The terminal arborization of this first hair was in no way unusual and its growth paralleled ganglion growth, maintaining a relatively constant position with respect to ganglion coordinates. A second clavate neuron behaved similarly, its arborization was fully formed when the receptor first appeared in the third instar and merely enlarged as the ganglion grew.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号