首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous analyses of the nuclear lamina of mammalian cells have revealed three major protein components (lamins A, B and C) that have been identified by protein sequence homology as members of the intermediate filament (IF) protein family. It has been claimed that mammalian cells contain either all three lamins or lamin B alone. Using monoclonal antibodies specific for B-type lamins and cDNA cloning we identified a second major mammalian B-type lamin (murine lamin B2), thus showing that lamin composition in mammals is more complex than previously thought. Lamin B2 is coexpressed with lamin B1 (formerly termed lamin B) in all somatic cells and mammalian species that we analysed, including a variety of cells currently believed to contain only a single lamin. This suggests that two B-type lamins are necessary to form a functional lamina in mammalian somatic cells. By cDNA cloning we found thatXenopus laevis lamin LII is the amphibian homolog of mammalian lamin B2. Lamin expression during embryogenesis of amphibians and mammals shows striking similarities. The first lamins expressed in the early embryo are the two B-type lamins, while A-type lamins are only detected much later in development. These findings indicate that the genomic differentiation into two B-type lamins occurred early in vertebrate evolution and has been maintained in both their primary structure and pattern of expression.  相似文献   

2.
The nuclear lamina is a protein meshwork that lines the nuclear envelope in metazoan cells. It is composed largely of a polymeric assembly of lamins, which comprise a distinct sequence homology class of the intermediate filament protein family. On the basis of its structural properties, the lamina originally was proposed to provide scaffolding for the nuclear envelope and to promote anchoring of chromatin and nuclear pore complexes at the nuclear surface. This viewpoint has expanded greatly during the past 25 years, with a host of surprising new insights on lamina structure, molecular composition and functional attributes. It has been established that the self-assembly properties of lamins are very similar to those of cytoplasmic intermediate filament proteins, and that the lamin polymer is physically associated with components of the cytoplasmic cytoskeleton and with a multitude of chromatin and inner nuclear membrane proteins. Cumulative evidence points to an important role for the lamina in regulating signaling and gene activity, and in mechanically coupling the cytoplasmic cytoskeleton to the nucleus. The significance of the lamina has been vaulted to the forefront by the discovery that mutations in lamins and lamina-associated polypeptides lead to an array of human diseases. A key future challenge is to understand how the lamina integrates pathways for mechanics and signaling at the molecular level. Understanding the structure of the lamina from the atomic to supramolecular levels will be essential for achieving this goal.  相似文献   

3.
In mammalian tissues, the nuclear lamina is composed of the major lamins A, B, and C, and minor lamins D/E. Although lamin B is present in all cell types, lamins A and C are absent from embryonic cells and most undifferentiated cells from hematopoietic lineage. We have investigated the nuclear lamina protein composition of the Raji cell line, lymphoblast-like cells established from a Burkitt lymphoma patient. Lamins A and C were confirmed absent by immunodetection and Northern blot analysis. Besides lamins B and D/E, a protein migrating around 71 kilodaltons was recognized by a serum directed against the nuclear lamina of BHK-21 fibroblasts. Cellular localization by sequential extraction established this 71-kilodalton protein as an exclusive component of the nuclear lamina fraction. These results indicate that the nuclear lamina has a more complex composition than previously thought to be the case for cells devoid of lamins A and C.  相似文献   

4.
The nuclear lamina is a meshwork of intermediate-type filament proteins (lamins) that lines the inner nuclear membrane. The lamina is proposed to be an important determinant of nuclear structure, but there has been little direct testing of this idea. To investigate lamina functions, we have characterized a novel lamin B1 mutant lacking the middle approximately 4/5 of its alpha-helical rod domain. Though retaining only 10 heptads of the rod, this mutant assembles into intermediate filament-like structures in vitro. When expressed in cultured cells, it concentrates in patches at the nuclear envelope. Concurrently, endogenous lamins shift from a uniform to a patchy distribution and lose their complete colocalization, and nuclei become highly lobulated. In vitro binding studies suggest that the internal rod region is important for heterotypic associations of lamin B1, which in turn are required for proper organization of the lamina. Accompanying the changes in lamina structure induced by expression of the mutant, nuclear pore complexes and integral membrane proteins of the inner membrane cluster, principally at the patches of endogenous lamins. Considered together, these data indicate that lamins play a major role in organizing other proteins in the nuclear envelope and in determining nuclear shape.  相似文献   

5.
The nuclear lamins are major components of a proteinaceous polymer that is located at the interface of the nuclear membrane and chromatin; these lamins are solubilized and dispersed throughout the cytoplasm during mitosis. It has been postulated that these proteins, assembled into the lamina, provide an architectural framework for the organization of the cell nucleus. To test this hypothesis we microinjected lamin antibodies into cultured PtK2 cells during mitosis, thereby decreasing the soluble pool of lamins. The antibody injected was identified, together with the lamins, in cytoplasmic aggregates by immunoelectron microscopy. We show that microinjected cells are not able to form normal daughter nuclei, in contrast to cells injected with other immunoglobulins. Although cells injected with lamin antibodies are able to complete cytokinesis, the chromatin of their daughter nuclei remains arrested in a telophase-like configuration, and the telophase-like chromatin remains inactive as judged from its condensed state and by the absence of nucleoli. These results indicate that lamins and the nuclear lamina structure are involved in the functional organization of the interphase chromatin.  相似文献   

6.
The nuclear lamina is a fibrous structure that lies at the interface between the nuclear envelope and the nucleoplasm. The major proteins comprising the lamina, the nuclear lamins, are also found in foci in the nucleoplasm, distinct from the peripheral lamina. The nuclear lamins have been associated with a number of processes in the nucleus, including DNA replication. To further characterize the specific role of lamins in DNA replication, we have used a truncated human lamin as a dominant negative mutant to perturb lamin organization. This protein disrupts the lamin organization of nuclei when microinjected into mammalian cells and also disrupts the lamin organization of in vitro assembled nuclei when added to Xenopus laevis interphase egg extracts. In both cases, the lamina appears to be completely absent, and instead the endogenous lamins and the mutant lamin protein are found in nucleoplasmic aggregates. Coincident with the disruption of lamin organization, there is a dramatic reduction in DNA replication. As a consequence of this disruption, the distributions of PCNA and the large subunit of the RFC complex, proteins required for the elongation phase of DNA replication, are altered such that they are found within the intranucleoplasmic lamin aggregates. In contrast, the distribution of XMCM3, XORC2, and DNA polymerase α, proteins required for the initiation stage of DNA replication, remains unaltered. The data presented demonstrate that the nuclear lamins may be required for the elongation phase of DNA replication.  相似文献   

7.
The nuclear lamina is an important determinant of nuclear architecture. Mutations in A-type but not B-type lamins cause a range of human genetic disorders, including muscular dystrophy. Dominant mutations in nuclear lamin proteins have been shown to disrupt a preformed lamina structure in Xenopus egg extracts. Here, a series of deletion mutations in lamins A and B1 were evaluated for their ability to disrupt lamina structure in Chinese hamster ovary cells. Deletions of either the lamin A "head" domain or the C-terminal CaaX domain formed intranuclear aggregates and resulted in the disruption of endogenous lamins A/C but not lamins B1/B2. By contrast, "head-less" lamin B1 localized to the nuclear rim with no detectable effect on endogenous lamins, whereas lamin B1 CaaX domain deletions formed intranuclear aggregates, disrupting endogenous lamins A/C but not lamins B1/B2. Filter binding assays revealed that a head/CaaX domain lamin B1 mutant interacted much more strongly with lamins A/C than with lamins B1/B2. Regulated induction of this mutant in stable cell lines resulted in the rapid elimination of all detectable lamin A protein, whereas lamin C was trapped in a soluble form within the intranuclear aggregates. In contrast to results in Xenopus egg extracts, dominant negative lamin B1 (but not lamin A) mutants trapped replication proteins involved in both the initiation and elongation phases of replication but did not effect cellular growth rates or the assembly of active replication centers. We conclude that elimination of the CaaX domain in lamin B1 and elimination of either the CaaX or head domain in lamin A constitute dominant mutations that can disrupt A-type but not B-type lamins, highlighting important differences in the way that A- and B-type lamins are integrated into the lamina.  相似文献   

8.
Lamin proteins are the major constituents of the nuclear lamina, a proteinaceous network that lines the inner nuclear membrane. Primarily, the nuclear lamina provides structural support for the nucleus and the nuclear envelope; however, lamins and their associated proteins are also involved in most of the nuclear processes, including DNA replication and repair, regulation of gene expression, and signaling. Mutations in human lamin A and associated proteins were found to cause a large number of diseases, termed ‘laminopathies.’ These diseases include muscular dystrophies, lipodystrophies, neuropathies, and premature aging syndromes. Despite the growing number of studies on lamins and their associated proteins, the molecular organization of lamins in health and disease is still elusive. Likewise, there is no comprehensive view how mutations in lamins result in a plethora of diseases, selectively affecting different tissues. Here, we discuss some of the structural aspects of lamins and the nuclear lamina organization, in light of recent results.  相似文献   

9.
B-type lamins (lamins B1 and B2) have been considered to be essential for many crucial functions in the cell nucleus (e.g., DNA replication and mitotic spindle formation). However, this view has been challenged by the observation that an absence of both B-type lamins in keratinocytes had no effect on cell proliferation or the development of skin and hair. The latter findings raised the possibility that the functions of B-type lamins are subserved by lamins A and C. To explore that idea, we created mice lacking all nuclear lamins in keratinocytes. Those mice developed ichthyosis and a skin barrier defect, which led to death from dehydration within a few days after birth. Microscopy of nuclear-lamin-deficient skin revealed hyperkeratosis and a disordered stratum corneum with an accumulation of neutral lipid droplets; however, BrdU incorporation into keratinocytes was normal. Skin grafting experiments confirmed the stratum corneum abnormalities and normal BrdU uptake. Interestingly, the absence of nuclear lamins in keratinocytes resulted in an interspersion of nuclear/endoplasmic reticulum membranes with the chromatin. Thus, a key function of the nuclear lamina is to serve as a “fence” and prevent the incursion of cytoplasmic organelles into the nuclear chromatin.  相似文献   

10.
Lamins are the main components of the metazoan lamina, and while the organization of the nuclear lamina of metazoans and plants is similar, there are apparently no genes encoding lamins or most lamin-binding proteins in plants. Thus, the plant lamina is not lamin-based and the proteins that form this structure are still to be characterized. Members of the plant NMCP/LINC/CRWN protein family share the typical tripartite structure of lamins, although the 2 exhibit no sequence similarity. However, given the many similarities between NMCP/LINC/CRWN proteins and lamins (structural organization, position of conserved regions, sub-nuclear distribution, solubility, and pattern of expression), these proteins are good candidates to carry out the functions of lamins in plants. Moreover, functional analysis of NMCP/LINC mutants has revealed their involvement in maintaining nuclear size and shape, another activity fulfilled by lamins. This review summarizes the current understanding of NMCP/LINC proteins and discusses future studies that will be required to demonstrate definitively that these proteins are plant analogs of lamins.  相似文献   

11.
M Peter  J Nakagawa  M Dorée  J C Labbé  E A Nigg 《Cell》1990,61(4):591-602
The nuclear lamina is an intermediate filament-type network underlying the inner nuclear membrane. Phosphorylation of lamin proteins is believed to cause lamina disassembly during meiotic and mitotic M phase, but the M phase-specific lamin kinase has not been identified. Here we show that the cdc2 kinase, a major element implicated in controlling the eukaryotic cell cycle, phosphorylates chicken B-type lamins in vitro on sites that are specifically phosphorylated during M phase in vivo. Concomitantly, cdc2 kinase is capable of inducing lamina depolymerization upon incubation with isolated nuclei. One of the target sites of cdc2 kinase is identified as a motif (SPTR) conserved in the N-terminal domain of all lamin proteins. These results lead us to propose that mitotic disassembly of the nuclear lamina results from direct phosphorylation of lamins by cdc2 kinase.  相似文献   

12.
The nuclear lamina of vertebrates is composed of several major polypeptides that range in mol. wt from 60 to 80 kd. In mammals, the three major lamin proteins are designated A, B and C. Two major lamins have been described in Xenopus somatic tissues; two other lamins are expressed primarily in germ cells. We have analysed a cDNA clone encoding a Xenopus lamin that is highly homologous to human lamins A and C. The predicted protein has the carboxy-terminal domain characteristic of human lamin A and is thus a lamin A homologue. Surprisingly, the lamin encoded by the cDNA clone is not one of the known Xenopus lamins. The encoded protein is distinct in size from the oocyte lamin LIII and the two somatic lamins LI and LII. Monoclonal antibodies specific for LII, LIII and LIV (the lamin of male germ cells) do not recognize the protein encoded by the cDNA clone; conversely, a polyclonal antibody against the encoded protein does not recognize any of the known Xenopus lamins. This lamin is expressed late in embryonic development, and is present in all adult somatic cells examined, except erythrocytes. Thus frogs and mammals are similar in having three major somatic lamins that fall into distinct structural classes.  相似文献   

13.
The nuclear lamina is a structure that lines the inner nuclear membrane. In metazoans, lamins are the primary structural components of the nuclear lamina and are involved in several processes. Eukaryotes that lack lamins have distinct proteins with homologous functions. Some years ago, a coiled-coil protein in Trypanosoma brucei, NUP-1, was identified as the major filamentous component of its nuclear lamina. However, its precise role has not been determined. We characterized a homologous protein in Trypanosoma cruzi, TcNUP-1, and identified its in vivo DNA binding sites using a chromatin immunoprecipitation assay. We demonstrate for the first time that TcNUP-1 associates with chromosomal regions containing large non-tandem arrays of genes encoding surface proteins. We therefore suggest that TcNUP-1 is a structural protein that plays an essential role in nuclear organization by anchoring T. cruzi chromosomes to the nuclear envelope.  相似文献   

14.
《The Journal of cell biology》1993,123(6):1661-1670
Recent evidence shows that the COOH-terminal CaaX motif of lamins is necessary to target newly synthesized proteins to the nuclear envelope membranes. Isoprenylation at the CaaX-cysteine has been taken to explain the different fates of A- and B-type lamins during cell division. A-type lamins, which loose their isoprenylation shortly after incorporation into the lamina structure, become freely soluble upon mitotic nuclear envelope breakdown. Somatic B-type lamins, in contrast, are permanently isoprenylated and, although depolymerized during mitosis, remain associated with remnants of nuclear envelope membranes. However, Xenopus lamin B3, the major B-type lamin of amphibian oocytes and eggs, becomes soluble after nuclear envelope breakdown in meiotic metaphase. Here we show that Xenopus lamin B3 is permanently isoprenylated and carboxyl methylated in oocytes (interphase) and eggs (meiotic metaphase). When transfected into mouse L cells Xenopus lamin B3 is integrated into the host lamina and responds to cell cycle signals in a normal fashion. Notably, the ectopically expressed Xenopus lamin does not form heterooligomers with the endogenous lamins as revealed by a coprecipitation experiment with mitotic lamins. In contrast to the situation in amphibian eggs, a significant portion of lamin B3 remains associated with membranes during mitosis. We conclude from these data that the CaaX motif-mediated modifications, although necessary, are not sufficient for a stable association of lamins with membranes and that additional factors are involved in lamin-membrane binding.  相似文献   

15.
The nuclear lamina is composed mainly of lamins A and C (A-type lamins) and lamins B1 and B2 (B-type lamins). Dogma has held that lamins B1 and B2 play unique and essential roles in the nucleus of every eukaryotic cell. Recent studies have raised doubts about that view but have uncovered crucial roles for lamins B1 and B2 in neuronal migration during the development of the brain. The relevance of lamins A and C in the brain remains unclear, but it is intriguing that prelamin A expression in the brain is low and is regulated by miR-9, a brain-specific microRNA.  相似文献   

16.
The peripheral lamina of rat liver nuclei is characterized by the presence of three major polypeptides called lamins A, B, and C. Recent studies have identified in rat liver lamina two quantitatively minor polypeptides that have some of the biochemical and immunological properties of the lamins and were tentatively called minor lamin species. We have further characterized these minor lamin polypeptides. Both minor lamin species copurified quantitatively with the major lamins in dissociation-reassociation experiments and shared epitopes with all three major lamins as well as with intermediate filament proteins, including an epitope involved in coiled-coil interactions in lamina and filaments. Minor lamins generated partial peptide maps very similar to each other but completely different from those of lamins A, B, and C. The two minor lamin species could be cross-linked into heteropolymers containing a constant ratio of both polypeptides by exposure to O-phenanthroline - cupric ion complexes, although they did not appear to be cross-linked by disulfide bonds in the native envelope. Preliminary results suggest that the cross-linked minor lamins could be preferentially associated with lamin B. It therefore appears that in addition to the network of lamins A, B, and C, the peripheral lamina is characterized by the presence of two closely juxtaposed minor lamin polypeptides. The molecular interactions between these various polypeptides and their respective roles remain to be identified.  相似文献   

17.
The peripheral lamina of eukaryotic nuclei is composed of polypeptides called lamins that vary in number from one to four according to organism, cell type, and differentiated state of the cells. Early embryonic cells and stem cells of mammals generally possess only lamin B while lamins A and C appear later during differentiation. To study the role of the late appearance of lamins A and C in the differentiated phenotype, we have performed transfection of cDNAs coding for human lamins A or C into mouse embryonal carcinoma (EC) cell lines F9 and P19 lacking these two lamins. Transient transfections have shown that lamins A or C could be expressed, translocated to the peripheral lamina, and distributed into daughter cell nuclei after mitosis. These results demonstrated that EC cells devoid of lamins A and C nevertheless possessed the appropriate mechanisms for the localization and mitotic redistribution of exogenous lamins A and C.  相似文献   

18.
19.
We have perturbed the dynamics of the nuclear lamins by means of cell fusion between mitotic and interphase cells and have studied redistribution of lamins in fused cells as a function of extracellular pH levels. We show here that in heterophasic M-1 HeLa homokaryons disassembly of interphase lamins predominates at low pH levels between 7.0 to 7.3, whereas deposition of cytoplasmic lamins around condensed metaphase chromosomes was observed at pH 8.0. In HeLa homokaryons lamina disassembly and lamina deposition around chromosomes are mutually exclusive. Using heterophasic M-1 homokaryons of the Chinese hamster cell line DON we observed that disassembly of interphase lamins and deposition of lamins around condensed chromosomes coexisted in the same homokaryon kept at pH 7.0. Disassembly of lamins developed synchronously with premature chromosome condensation (PCC) whereas lamina deposition around the condensed M-chromosomes was followed by telophasing. In fusions kept at pH 8.0 cytoplasmic lamins were exclusively deposited around mitotic chromosomes. The results are interpreted as showing that pH regulates the lamina dynamics in homokaryons of mitotic and interphase cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号