首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Activation of mouse lymphocytes by vesicular stomatitis virus.   总被引:5,自引:3,他引:5       下载免费PDF全文
Vesicular stomatitis virus (VSV) is a mitogen for mouse spleen cells, and infectious virus is not required for mitogenesis. At concentrations between 10 and 100 microgram per culture, VSV stimulated DNA synthesis and blast transformation. Maximal activation by VSV occurred 48 h after culture initiation. Spleen cells depleted of T-lymphocytes by treatment with anti-Thy 1.2 and complement and those obtained from congenitally athymic BALB/c nu/nu mice were activated by VSV, suggesting that VSV is a B-cell mitogen. Activation of spleen cells was independent of the host in which the virus was grown, since VSV grown in BHK-21, HKCC, or MDBK cells was mitogenic. The mitogenesis was specific for VSV, since MDBK cell-grown WSN influenza virus was not a mitogen in this in vitro activation system, VSV-specific antibody prevented VSV mitogenesis, and VSV was mitogenic for spleen cells from C3H/HeJ mice which were resistant to mitogenesis by endotoxin.  相似文献   

2.
Pathway of vesicular stomatitis virus entry leading to infection   总被引:67,自引:0,他引:67  
The entry of vesicular stomatitis virus into Madin-Darby canine kidney (MDCK) cells was examined both biochemically and morphologically. At low multiplicity and 0 °C, viruses bound to the cell surface but were not internalized. Binding was very dependent on pH. More than ten times more virus bound at pH 6.5 than at higher pH values. At the optimal pH, binding failed to reach equilibrium after more than two hours. The proportion of virus bound was irreproducible and low, relative to the binding of other enveloped viruses. Over 90% of the bound viruses were removed by proteases. When cells with pre-bound virus were warmed to 37 °C, a proportion of the bound virus became protease-resistant with a half-time of about 30 minutes. After a brief lag period, degraded viral material was released into the medium. The protease-resistant virus was capable of infecting the cells and probably did so by an intracellular route, since ammonium chloride blocked the infection and slightly reduced the degradation of viral protein.When the entry process was observed by electron microscopy, viruses were seen bound to the cell surface at 0 °C and, after warming at 37 °C, within coated pits, coated vesicles and larger, smooth-surfaced vesicles. No fusion of the virus with the plasma membrane was observed at pH 7.4.When pre-bound virus was incubated at a pH below 6 for 30 seconds at 37 °C, about 40 to 50% of the pre-bound virus became protease-resistant. On the basis of this result and previously published experiments (White et al., 1981), it was concluded that vesicular stomatitis virus fuses to the MDCK cell plasma membrane at low pH.These experiments suggest that vesicular stomatitis virus enters MDCK cells by endocytosis in coated pits and coated vesicles, and is transported to the lysosome where the low pH triggers a fusion reaction ultimately leading to the transfer of the genome into the cytoplasm. The entry pathway of vesicular stomatitis virus thus resembles that described earlier for both Semliki Forest virus and fowl plague virus.  相似文献   

3.
Inhibition of vesicular stomatitis virus infection by nitric oxide.   总被引:14,自引:5,他引:14       下载免费PDF全文
Z Bi  C S Reiss 《Journal of virology》1995,69(4):2208-2213
Inhibitory effects of nitric oxide (NO) on vesicular stomatitis virus (VSV) infection were investigated by using a VSV-susceptible mouse neuroblastoma cell line, NB41A3. Productive VSV infection of NB41A3 cells was significantly inhibited by an organic NO donor, S-nitro-N-acetylpenicillamine (SNAP), while the control compound N-acetylpenicillamine (NAP) had no effect. Survival rate of VSV-infected cells was greatly increased by the treatment with SNAP, while the NAP treatment did not have any effect. Adding SNAP 30 min prior to infection resulted in complete inhibition of viral production when a low multiplicity of infection (MOI) was used. Substantial inhibition of viral production was also obtained with treating cells 6 h earlier before infection with a higher MOI. Activating the neuronal NO synthase by treating cells with N-methyl-D-aspartate (NMDA) led to significant inhibition of viral production by cells infected at the three doses of virus tested (MOIs of 0.1, 1, and 5). The inhibitory effect of NMDA on viral infection was totally blocked by the NO synthase inhibitor N-methyl-L-arginine. However, adding hemoglobin, a strong NO-binding protein and thus an inactivator of NO activity, did not reverse the NMDA-induced inhibition of viral production, suggesting that NO might exert its antiviral effects inside the NO-producing cells. Collectively, these data support the anti-VSV effects of NO, which might be one of the important factors of natural immunity in controlling the initial stages of VSV infection in the central nervous system.  相似文献   

4.
The effects of infection with vesicular stomatitis virus (VSV) on delayed-type hypersensitivity (DTH) to heterologous serum proteins were investigated in mice. DTH was induced by a subcutaneous injection of antigen in complete Freund's adjuvant. Infection with VSV at the time of immunization did not affect the level of DTH elicited 3 wk later. Marked augmentation of DTH was observed only when previously immunized mice were infected with VSV simultaneously with restimulation by soluble antigen; either soluble antigen or the virus infection alone was ineffective. The augmentation was specific to the antigen used for the restimulation; in the mouse previously immunized with both bovine serum albumin (BSA) and human alpha-globulin (HGG), DTH to BSA but not to HGG was augmented by injecting soluble BSA and VSV, and vice versa. These results strongly suggest that cells involved in the suppression of DTH manifestation became susceptible to the virus after specific antigenic restimulation and were then eliminated.  相似文献   

5.
B S Huneycutt  Z Bi  C J Aoki    C S Reiss 《Journal of virology》1993,67(11):6698-6706
To determine whether central neuropathogenesis associated with vesicular stomatitis virus (VSV) infection is regulated by T cells, we have examined the effects of intranasal infection of mice lacking T cells. The mice examined were of two kinds: (i) thymus-deficient BALB/c nu/nu nice and (ii) BALB/c mice experimentally depleted of T cells by systemic infusions of a monoclonal antibody to the CD4 or CD8 cell surface molecules. These mice were infected intranasally with a single dose of replication-competent VSV. Brain tissue homogenates were analyzed for the presence of infectious virus. For each population of mice, infection-related mortality was assessed. In histological sections of brain, the distribution of viral antigens (Ags) was examined by immunocytochemistry. We found that recovery of infectious virus from homogenates of tissues obtained from athymic nu/nu animals was more than 10 times greater than that from samples from their euthymic littermates. With a single exception in a BALB/c nu/nu mouse, virus was not isolated from the spleen when it was administered intranasally. In these experimental infections, athymic mice succumbed 1 to 2 days before their euthymic littermates. A dose of virus that resulted in half of the nu/+ survival rate was uniformly lethal to nu/nu mice. In experiments with BALB/c mice depleted of either CD4+ or CD8+ T cells by in vivo antibody treatment, histological analysis revealed an increase in viral Ag distribution in comparison with control (medium-infused) infected mice. Necrosis and inflammation paralleled the extent of viral Ag expression. Viral Ags were detected in discrete areas that usually remain uninfected in immunocompetent mice. These areas include the neocortex and caudate putamen nuclei, the piriform cortex, and the lateral olfactory tract. Neuronal loss and necrosis were consistently found in the olfactory bulb and the horizontal/vertical band of Broca. In some of the T-cell depleted mice, necrosis was also evident in the hippocampus, fimbria, mammillary bodies, and hypothalamic nuclei. In the brain stem, perivascular cuffing was evident, but with little necrosis. Collectively, these data suggest that CD4+ and CD8+ T cells make only a minor contribution to the development of histopathology but rather function together to limit viral replication and transsynaptic or ventricular spread of virus, thus promoting recovery. The primary effectors of histopathology appear to be related more to the cytopathologic nature of the virus infection and non-T-cell-mediated mechanisms.  相似文献   

6.
Long-term antigen expression is believed to play an important role in modulation of T-cell responses to chronic virus infections. However, recent studies suggest that immune responses may occur late after apparently acute infections. We have now analyzed the CD8 T-cell response to vesicular stomatitis virus (VSV), which is thought to cause to an infection characterized by rapid virus clearance by innate and adaptive immune system components. Unexpectedly, virus-encoded antigen was detectable more than 6 weeks after intranasal VSV infection in both draining and nondraining lymph nodes by adoptively transferred CD8 T cells. Infection with Listeria monocytogenes expressing the same antigen did not result in prolonged antigen presentation. Weeks after VSV infection, discrete T-cell clustering with dendritic cells within the lymph node was observed after transfer of antigen-specific CD8 T cells. Moreover, memory CD8 T cells as defined by phenotype and function were generated from na?ve CD8 T cells entering the response late after infection. These findings suggested that protracted antigen presentation after an apparently acute virus infection may contribute to an ongoing antiviral immune response.  相似文献   

7.
Vesicular stomatitis virus (VSV) forms pseudotypes with envelope components of reticuloendotheliosis virus (REV). The VSV pseudotype possesses the limited host range and antigenic properties of REV. Approximately 70% of the VSV, Indiana serotype, and 45% of VSV, New Jersey serotype, produced from the REV strain T-transformed chicken bone marrow cells contain mixed envelope components of both VSV and REV. VSV pseudotypes with mixed envelope antigens can be neutralized with excess amounts of either anti-VSV antiserum or anti-REV antiserum.  相似文献   

8.
Vesicular stomatitis virus (VSV) infection depends on the fusion of viral and cellular membranes, which is mediated by virus spike glycoprotein G at the acidic environment of the endosomal compartment. VSV G protein does not contain a hydrophobic amino acid sequence similar to the fusion peptides found among other viral glycoproteins, suggesting that membrane recognition occurs through an alternative mechanism. Here we studied the interaction between VSV G protein and liposomes of different phospholipid composition by force spectroscopy, isothermal titration calorimetry (ITC), and fluorescence spectroscopy. Force spectroscopy experiments revealed the requirement for negatively charged phospholipids for VSV binding to membranes, suggesting that this interaction is electrostatic in nature. In addition, ITC experiments showed that VSV binding to liposomes is an enthalpically driven process. Fluorescence data also showed the lack of VSV interaction with the vesicles as well as inhibition of VSV-induced membrane fusion at high ionic strength. Intrinsic fluorescence measurements showed that the extent of G protein conformational changes depends on the presence of phosphatidylserine (PS) on the target membrane. Although the increase in PS content did not change the binding profile, the rate of the fusion reaction was remarkably increased when the PS content was increased from 25 to 75%. On the basis of these data, we suggest that G protein binding to the target membrane essentially depends on electrostatic interactions, probably between positive charges on the protein surface and negatively charged phospholipids in the cellular membrane. In addition, the fusion is exothermic, indicating no entropic constraints to this process.  相似文献   

9.
Four hours after infection of BHK cells by vesicular stomatitis virus (VSV), the rate of total protein synthesis was about 65% that of uninfected cells and synthesis of the 12 to 15 predominant cellular polypeptides was reduced to a level about 25% that of control cells. As determined by in vitro translation of isolated RNA and both one- and two-dimensional gel analyses of the products, all predominant cellular mRNA's remained intact and translatable after infection. The total amount of translatable mRNA per cell increased about threefold after infection; this additional mRNA directed synthesis of the five VSV structural proteins. To determine the subcellular localization of cellular and viral mRNA before and after infection, RNA from various sizes of polysomes and nonpolysomal ribonucleoproteins (RNPs) was isolated from infected and noninfected cells and translated in vitro. Over 80% of most predominant species of cellular mRNA was bound to polysomes in control cells, and over 60% was bound in infected cells. Only 2 of the 12 predominant species of translatable cellular mRNA's were localized to the RNP fraction, both in infected and in uninfected cells. The average size of polysomes translating individual cellular mRNA's was reduced about two- to threefold after infection. For example, in uninfected cells, actin (molecular weight 42,000) mRNA was found predominantly on polysomes with 12 ribosomes; after infection it was found on polysomes with five ribosomes, the same size of polysomes that were translating VSV N (molecular weight 52,000) and M (molecular weight 35,000) mRNA. We conclude that the inhibition of cellular protein synthesis after VSV infection is due, in large measure, to competition for ribosomes by a large excess of viral mRNA. The efficiency of initiation of translation on cellular and viral mRNA's is about the same in infected cells; cellular ribosomes are simply distributed among more mRNA's than are present in growing cells. About 20 to 30% of each of the predominant cellular and viral mRNA's were present in RNP particles in infected cells and were presumably inactive in protein synthesis. There was no preferential sequestration of cellular or viral mRNA's in RNPs after infection.  相似文献   

10.
TLRs are important components of the innate immune response. The role of the TLR signaling pathway in host defense against a natural viral infection has been largely unexplored. We found that mice lacking MyD88, an essential adaptor protein in TLR signaling pathway, were extremely sensitive to intranasal infection with vesicular stomatitis virus, and this susceptibility was dose dependent. We demonstrated that this increased susceptibility correlates with the impaired production of IFN-alpha and defective induction and maintenance of neutralizing Ab. These studies outline the important role of the TLR signaling pathway in nasal mucosae-respiratory tracts-neuroepithelium environment in the protection against microbial pathogen infections. We believe that these results explain how the route of infection, probably by virtue of activating different cell populations, can lead to entirely different outcomes of infection based on the underlying genetics of the host.  相似文献   

11.
The mechanism by which viral glycoproteins are incorporated into virus envelopes during budding from host membranes is a major question of virus assembly. Evidence is presented here that the envelope glycoprotein (G protein) of vesicular stomatitis virus binds to the viral matrix protein (M protein) in vitro with the specificity, reversibility, and affinity necessary to account for virus assembly in vivo. The assay for the interaction is based on the ability of M protein to stabilize the interaction of G protein subunits, which exist as trimers of identical subunits in the virus envelope. The interaction with M protein was shown by using G proteins labeled with fluorescent probes capable of detecting subunit dissociation and reassociation in vitro. The results show that the M protein isolated from virions either as purified soluble protein or as nucleocapsid-M protein complexes interacts with the G protein in vitro and that the reaction is reversible. The interaction between the G and M proteins was not serotype specific, but no interaction between the vesicular stomatitis virus M protein and the influenza virus hemagglutinin could be detected. These results support the conclusion that the interactions described here are the ones that govern assembly of G protein into virus envelopes in vivo.  相似文献   

12.
The matrix (M) protein of vesicular stomatitis virus (VSV) functions from within the nucleus to inhibit bi-directional nucleocytoplasmic transport. Here, we show that M protein can be imported into the nucleus by an active transport mechanism, even though it is small enough (approximately 27 kDa) to diffuse through nuclear pore complexes. We map two distinct nuclear localization signal (NLS)-containing regions of M protein, each of which is capable of directing the nuclear localization of a heterologous protein. One of these regions, comprising amino acids 47-229, is also sufficient to inhibit nucleocytoplasmic transport. Two amino acids that are conserved among the matrix proteins of vesiculoviruses are important for nuclear localization, but are not essential for the inhibitory activity of M protein. Thus, different regions of M protein function for nuclear localization and for inhibitory activity.  相似文献   

13.
14.
The T cell-mediated immune responses of mice against vesicular stomatitis virus (VSV) were assessed by measuring direct primary foot pad swelling after local VSV infection and cytotoxic activity in spleens. The cytolytic activity was mediated by T cells since it was anti-theta + complement sensitive, was restricted by the K and D region but not the I region of H-2 and rapidly increased after 4 days but decreased 8 days after systemic or local infection. Cytolytic activity was virus-specific as reciprocally tested with VSV and vaccina virus immune T cells. Measurable activity on day 7 depended on infectious virus dose, virus virulence, and non-H-2 genetic background of the host. More than half of the cytolytic activity wasblocked specifically by either immune anti-H2 or rabbit anti-VSV antisera. Analysis of the kinetics of appearance of antigenic changes using metabolic inhibitors, revealed that the changes that rendered target cells susceptible to lysis after infection, occurred within the first hour after infection.  相似文献   

15.
Inflammasomes are cytosolic protein complexes that regulate caspase-1 activation and the secretion of interleukin-1β (IL-1β) and IL-18. Several different inflammasome complexes have been identified, but the NLRP3 inflammasome is particularly notable because of its central role in diseases of inflammation. Recent work has demonstrated an essential role for the NLRP3 inflammasome in host defense against influenza virus. We show here that two other RNA viruses, encephalomyocarditis virus (EMCV) and vesicular stomatitis virus (VSV), activate the NLRP3 inflammasome in dendritic cells and macrophages through a mechanism requiring viral replication. Inflammasome activation in response to both viruses does not require MDA5 or RIG-I signaling. Despite the ability of the NLRP3 inflammasome to detect EMCV and VSV, wild-type and caspase-1-deficient mice were equally susceptible to infection with both viruses. These findings indicate that the NLRP3 inflammasome may be a common pathway for RNA virus detection, but its precise role in the host response may be variable.  相似文献   

16.
We have sequenced (via a product RNA) the 3' RNA terminus of a defective interfering particle that was generated from the standard virus isolated from a culture of BHK-21 cells persistently infected with vesicular stomatitis virus for over 5 years. By hybridization and RNA sequencing, seven mutations were identified in the 46 nucleotides at the terminus of this defective-interfering-particle RNA. It is likely that these mutations are a reflection of altered protein-nucleic acid interactions that the virus has evolved to maintain its persistently infected carrier state in vitro.  相似文献   

17.
18.
The effects of cytochalasin B and chloroquine on the process of endocytosis of Sindbis virus particles and polystyrene spheres were determined by electron microscopy. The effects of these agents on the process of infection (attachment, penetration, and uncoating) of BHK-21 cells by Sindbis virus and vesicular stomatitis virus were also determined. Cytochalasin B completely blocked ingestion of Sindbis virus particles or latex spheres by BHK cells but had no effect on the ability of Sindbis virus or vesicular stomatitis virus to infect or replicate in BHK cells. Chloroquine did not inhibit the ingestion of either latex spheres or virus particles but greatly reduced the yields of virus produced. These data suggest that endocytosis is not essential for the infection of cultured cells by Sindbis virus or vesicular stomatitis virus.  相似文献   

19.
20.
Stereo images of vesicular stomatitis virus assembly.   总被引:2,自引:12,他引:2       下载免费PDF全文
Viral assembly was studied by viewing platinum replicas of cytoplasmic and outer plasma membrane surfaces of baby hamster kidney cells infected with vesicular stomatitis virus. Replicas of the cytoplasmic surface of the basilar plasma membrane revealed nucleocapsids forming bullet-shaped tight helical coils. The apex of each viral nose cone was anchored to the membrane and was free of uncoiled nucleocapsid, whereas tortuous nucleocapsid was attached to the base of tightly coiled structures. Using immunoelectron microscopy, we identified the nucleocapsid (N) viral protein as a component of both the tight-coil and tortuous nucleocapsids, whereas the matrix (M) protein was found only on tortuous nucleocapsids. The M protein was not found on the membrane. Using immunoreagents specific for the viral glycoprotein (G protein), we found that the amount of G protein per virion varied. The G protein was consistently localized at the apex of viral buds, whereas the density of G protein on the shaft was equivalent to that in the surrounding membrane. These observations suggest that G-protein interaction with the nucleocapsid via its cytoplasmic domain may be necessary for the initiation of viral assembly. Once contact is established, nucleocapsid coiling proceeds with nose cone formation followed by formation of the helical cylinder. M protein may function to induce a nucleocapsid conformation favorable for coiling or may cross-link adjacent turns in the tight coil or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号