首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tumor suppressor PTEN is a lipid phosphatase that is found mutated in different types of human cancers. PTEN suppresses cell proliferation by inhibiting the PI3K-Akt signaling pathway at the cell membrane. However, PTEN is also demonstrated to localize in the cell nucleus where it exhibits tumor suppressive activity via a different, unknown mechanism. In this study we report that PTEN also localizes to the nucleolus and that nucleolar PTEN plays an important role in regulating nucleolar homeostasis and maintaining nucleolar morphology. Overexpression of nuclear PTEN in PTEN null cells inhibits Akt phosphorylation and reduces cell size. Knockdown of PTEN in PTEN positive cells leads to nucleolar morphologic changes and an increase in the proportion of cells with a greater number of nucleoli. In addition, knockdown of PTEN in PTEN positive cells increased ribosome biogenesis. These findings expand current understanding of function and relevance of nuclear localized PTEN and provide a foundation for the development of novel therapies targeting PTEN.  相似文献   

2.
STAT3 pathway plays an important role in the growth of diffuse large B-cell lymphoma (DLBCL) cells. Here we investigated the antitumor activity of Quercetin, a flavonoid compound, in combination with rituximab in DLBCL cell lines in vitro. We found that Quercetin synergistically enhanced rituximab-induced growth inhibition and apoptosis in DLBCL cell lines. Moreover, we found Quercetin exerted inhibitory activity against STAT3 pathway and downregulated the expression of survival genes. These results suggest that combining the Quercetin with rituximab may present an attractive and potentially effective way for the treatment of DLBCL.  相似文献   

3.
Cinnamoyl-CoA reductase (CCR, EC 1.2.1.44), which catalyzes the reduction of cinnamoyl-CoA esters to their respective cinnamaldehydes, is considered as a key enzyme in lignin formation. The substrates of CCR, cinnamoyl-CoA esters, are products of 4-Coumarate-CoA ligase (4CL, EC 6.2.1.12), which is an enzyme upstream of CCR. The PtCCR and Pt4CL were isolated from Populus tomentosa and expressed in E. coli. Results showed that 4CL can catalyze the conversion of hydroxycinnamic acids to cinnamoyl-CoA esters, with high efficiency. The purification of esters using SPE cartridges suggested that 40 % methanol with 0.1 M of acetic acid was the optimal elution buffer for cinnamoyl-CoA esters. The optimization of prokaryotic expression demonstrated that the best expression conditions for recombinant PtCCR was 6 h of 0.4 mM IPTG induction at 37 °C. PtCCR enzyme assay illustrated that the recombinant protein can catalyze the reduction of cinnamoyl-CoA esters. Kinetics analysis showed that feruloyl-CoA has higher affinity to PtCCR with faster reaction speed (Vmax), indicating that feruloyl-CoA was the most favorable substrate for PtCCR catalysis. The recombinant protein was expressed in E. coli, purified through affinity column chromatography, and characterized by SDS-PAGE. SPE cartridges were used to purify the ester products of the Pt4CL reaction. HPLC-MS was used to analyze the structure of esters and evaluate their purity or quantity. Furthermore, the enzyme activity of recombinant CCR to feruloyl-CoA at different pHs indicated that compartmentalization may be an important factor in lignin monomer formation.  相似文献   

4.

Background and aims

Paenibacillus spp. are widely considered to impact the fertility and health of soil. The aim of this study was to evaluate how different fertilization regimes affect the population size and community structure of Paenibacillus spp. over a long period of time in red soil.

Methods

Soil samples were collected from a long-term experiment and were then analyzed using real-time PCR and PCR-DGGE. The correlation analysis, PCA and RDA were used to explore the relationships among Paenibacillus spp. population, community structure and soil properties in different treatments.

Results

The pH was seriously decreased only by the application of chemical fertilizer. The largest population of Paenibacillus spp. was found in the soil treated with organic fertilizer application, while the richest diversity was observed in the soil treated only with the chemical fertilizer. The Paenibacillus spp., Paenibacillus alkaliterrae, Paenibacillus campinasensis, and Paenibacillus xylanilyticus were found in all treatments. Paenibacillus castaneae was found in the soil treated with NPK, and Paenibacillus pabuli was specifically observed in the lime-amended treatment. Paenibacillus taichungensis and Paenibacillus prosopidis were detected in the soil treated with only chemical fertilizer. Except for the ammonium and pH, all the tested soil fertility parameters (total C, total N, nitrate, available K and available P) could significantly affect both the Paenibacillus spp. population number and diversity. The soil pH was significantly correlated with Paenibacillus spp. diversity only.

Conclusions

Our results indicate that the different long-term fertilization regimes have varied impact on both the Paenibacillus spp. population size and the diversity of the community associated with the soil properties tested. These results can help to enrich the information on the response of beneficial soil microbes to different long-term fertilization regimes.  相似文献   

5.
Receptors for advanced glycation end-products (RAGE) are members of the immunoglobulin superfamily of cell-surface receptors implicated in mechanisms of pulmonary inflammation. In the current study, we test the hypothesis that RAGE mediates inflammation in primary alveolar macrophages (AMs) exposed to diesel particulate matter (DPM). Quantitative RT-PCR and immunoblotting revealed that RAGE was up-regulated in Raw264.7 cells, an immortalized murine macrophage cell line and primary AMs exposed to DPM for 2 h. Because DPM increased RAGE expression, we exposed Raw264.7 cells and primary AMs isolated from RAGE null and wild-type (WT) mice to DPM prior to the assessment of inflammatory signaling intermediates. DPM led to the activation of Rat sarcoma GTPase (Ras), p38 MAPK and NF-κB in WT AMs and, when compared to WT AMs, these intermediates were diminished in DPM-exposed AMs isolated from RAGE null mice. Furthermore, cytokines implicated in inflammation, including IL-4, IL-12, IL-13 and TNFα, were all significantly decreased in DPM-exposed RAGE null AMs compared to similarly exposed WT AMs. These results demonstrate that diesel-induced inflammatory responses by primary AMs are mediated, at least in part, via RAGE signaling mechanisms. Further work may show that RAGE signaling in both alveolar epithelial cells and resident macrophages is a potential target in the treatment of inflammatory lung diseases exacerbated by environmental pollution.  相似文献   

6.
Suppression of the activity of pro-apoptotic Bcl-2-family proteins frequently confers chemoresistance to many human cancer cells. Using subcellular fractionation, the ER calcium (Ca++) channel inhibitor dantrolene and small interfering RNA (siRNA) against Bax or Bak, we show that the new synthetic bichalcone analog TSWU-CD4 induces apoptosis in human cancer cells by releasing endoplasmic reticulum (ER)-stored Ca++ through ER/mitochondrial oligomerization of Bax/Bak. Blockade of the protein kinase RNA-like ER kinase or the unfolded protein response regulator glucose-regulated protein 78 expression by siRNA not only suppressed oligomeric Bax/Bak-mediated pro-caspase-12 cleavage and apoptosis but also resulted in an inhibition of Bcl-2 downregulation induced by TSWU-CD4. Induction of the ER oligomerization of Bax/Bak and apoptosis by TSWU-CD4 were suppressed by Bcl-2 overexpression. Inhibition of lipid raft-associated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling by TSWU-CD4 induced ER stress- and oligomeric Bax/Bak-mediated apoptosis, which were substantially reversed by overexpression of the wt PI3K p85α subunit. Taken together, these results suggest that suppression of lipid raft-associated PI3K/Akt signaling is required for the ER stress-mediated apoptotic activity of Bax/Bak, which is responsible for the ability of TSWU-CD4-treated cancer cells to exit the ER-mitochondrial apoptotic cell death pathway.  相似文献   

7.
Interferon gamma (IFN-γ) is an important immunoregulatory cytokine that has a central role against viral and bacterial infections. In this study, the cDNA encoding 141 amino acids of mature IFN-γ from mice splenocytes was cloned in a prokaryotic expression vector pQE 30. Optimization of expression conditions resulted in high IFN-γ protein. Western blot showed that recombinant IFN-γ was specifically recognized by its counterpart anti-mouse IFN-γ antibodies. In vitro dose-dependent studies, with A549 and HeLa cell lines, showed that cloned IFN-γ was safe and had no effect on cell proliferation. The protein prediction and analysis using SOPMA program, revealed that IFN-γ had 80 α-helices, 8 β-turns jointed by 9 extended strands and 44 random coils. A total of four major clusters were observed with murine IFN-γ sharing 39 % homology with human IFN-γ. Pair-wise alignment studies with human revealed 26 % identity and 43.3 % similarity. The recovery of bioactive proteins from inclusion bodies (IBs) is a complex process and various protocols have been developed. We report here a simple, robust and inexpensive purification approach for obtaining recombinant IFN-γ protein expressed as IBs in E.coli.  相似文献   

8.
9.
Human phosphatase and tensin homolog (hPTEN) gene was expressed in vascular smooth muscle cells (VSMCs) to study its effect on VSMC proliferation induced in platelet-derived growth factor (PDGF) conditioned medium. After G418 selection, MTT assay was conducted to examine transfected VSMC proliferation induced in human PDGF conditioned medium. We successfully constructed eukaryotic expression vector pcDNA4/myc-His-PTEN and transferred into VSMC cells. We report that in vitro proliferation of VSMC was inhibited in PTEN transfected VSMCs induced in PDGF conditioned medium. RT-PCR and Western blot results indicated significantly high levels of protein kinase B-PKB and nuclear factor kappa B mRNA and protein, respectively, in PDGF group as compared with the control group.  相似文献   

10.
Analysis of fluorescence lifetime imaging microscopy (FLIM) and Förster resonance energy transfer (FRET) experiments in living cells is usually based on mean lifetimes computations. However, these mean lifetimes can induce misinterpretations. We propose in this work the implementation of the transportation distance for FLIM and FRET experiments in vivo. This non-fitting indicator, which is easy to compute, reflects the similarity between two distributions and can be used for pixels clustering to improve the estimation of the FRET parameters. We study the robustness and the discriminating power of this transportation distance, both theoretically and numerically. In addition, a comparison study with the largely used mean lifetime differences is performed. We finally demonstrate practically the benefits of the transportation distance over the usual mean lifetime differences for both FLIM and FRET experiments in living cells.  相似文献   

11.
This study aimed to evaluate the immunolocalization and messenger RNA (mRNA) expression for transforming growth factor-beta (TGF-β) and its receptors (TGF-βRI and RII), as well as mRNA expression for P450 aromatase and FSH receptor in caprine preantral follicles. The effects of TGF-β, FSH alone, or in association on the in vitro follicular development were also assessed. Immunohistochemical analyses showed the expression of TGF-β and its receptors in oocytes of all follicle stages and granulosa cells of primary and secondary follicles. mRNA for TGF-β receptors and for FSH receptor (FSHR) was present in preantral follicles as well as in oocytes and granulosa cells of antral follicles. Isolated secondary follicles were cultured in α-minimum essential medium (MEM) alone or supplemented with either FSH (100 ng/ml), TGF-β (10 ng/ml), or TGF-β + FSH for 18 d. TGF-β increased significantly oocyte diameter when compared to FSH alone and control. After 18 d of culture, all groups showed a significant reduction in P450 aromatase and FSHR mRNA levels in comparison to fresh control. In contrast, treatment with FSH significantly increased the mRNA expression for TGF-β in comparison to fresh control and other treatments. In conclusion, the findings showed that TGF-β and its receptors are present in caprine ovarian follicles. Furthermore, they showed a positive effect on oocyte growth in vitro.  相似文献   

12.
13.
To more effectively control two major cotton insects (cotton bollworm and Spodoptera litura) and improve the efficacy of the pest resistance management, novel transgenic plants expressing Bacillus thuringiensis Cry9C gene were generated, and gene stacking strategy was incorporated. Initially, a binary plasmid vector harboring Cry9C gene was introduced into an elite cotton cultivar Simian-3 by Agrobacterium-mediated transformation. Integration and expression of the Cry9C genes in three transgenic lines were confirmed by PCR and RT-PCR. Among these transgenic lines, T0 generation of line 16 (L-16) with normal phenotypes were selected by ELISA assays for its highest expression level of Cry9C. In T1 population of L-16, the expression level of Cry9C ranged from 29 to 45 μg/g fresh leaf. The following insect bioassays demonstrated that transgenic S3-35S::Cry9C cotton plants exhibited moderate toxicity to Heliothis armigera but strong toxicity to S. litura compared with the transgenic plants expressing Cry 1Ac gene. For incorporation of gene staking strategy, Cry9C gene and Cry 2A or Cry 1Ac were pyramided, respectively by sexual crossing. The expression of Cry9C protein in all F1 progenies had a similar level as the parent plants indicating the high heritability of Bt genes in transgenic progenies. Progenies from both Cry9C × Cry 2A and Cry9C × Cry 1Ac exhibited higher resistance to S. litura compared with their parents. Together our data demonstrated that our newly generated transgenic plants represent a reservoir of novel insect-resistant materials in cotton breeding, and the successful incorporation of gene pyramiding technology can provide a new solution of developing multiple resistance management strategies.  相似文献   

14.
15.
16.
As the world races towards a plant-based bioeconomy, plants known to be ideal and economical bioreactors are being harnessed for the production of recombinant proteins. The major immunodominant 10 kDa GroES TB antigen (Chaperonin 10) gene from Mycobacterium tuberculosis was selected for expression in plants as a putative tuberculosis (TB) subunit vaccine candidate. Two crops, tobacco and potato, were engineered by stable plant transformation for expression of the 10 kDa GroES TB antigen using non-viral binary vectors. The integration of the GroES TB gene into the genomes of tobacco and potato was confirmed by PCR and Southern blotting. The expression of the GroES TB antigen in tobacco was 0.04–1.2 % of the total soluble protein (TSP). However, the expression of the same TB antigen in the Indian potato cv. Kufri bahar was comparatively low (0.033 % of TSP). The recombinant GroES plant derived protein was characterised and confirmed by MALDI-TOF–TOF and ELISA. This is the first report of the expression of the 10 kDa chaperonin in tobacco and potato.  相似文献   

17.
Recently, it was found that α-Calcitonin gene-related peptide (CGRP) was associated with breast cancer metastases, but the role of CGRP in interaction between breast cancer and osteoblast during bone metastases is not clear. Here, we investigated the effect of CGRP on osteoblast in co-culture system with breast cancer. Using a breast cancer–osteoblast co-culture system, we chose MDA-MB-231 for breast cancer and human cell line MG-63 for osteoblast. CGRP was added to this co-culture system. The expression levels of the Runx2, RANK1, and osteoprotegerin (OPG) were analyzed using real-time PCR and western blot. CGRP receptors were investigated by immunofluorescence. We found that breast cancer cells cause osteolysis lesions by upregulating Runx2 expression, decreasing OPG expression, and increasing RANKL expression in osteoblasts. Our data prove that CGRP can regulate osteoclast coupling genes in osteoblast by increasing OPG, and decreasing RANKL and Runx2 expressions in a time-dependent manner; and inhibit those osteolytic factors induced by interaction between breast cancer cells and osteoblast. This inhibition could be abolished by the CGRP antagonist, CGRP8–37. In conclusion, calcitonin receptor-like receptor is the key player for CGRP’s effect in this co-culture system.  相似文献   

18.
Mitochondrial dysfunction is a hallmark of amyloid β peptide (Aβ)-induced neuronal toxicity in Alzheimer’s disease (AD). However, the underlying mechanism (s) of Aβ-induced mitochondrial dysfunction is still not fully understood. There is evidence that nuclear factor-κB (NF-κB) is involved in Aβ-induced neurotoxicity and is present in mitochondria. Using HT22 murine hippocampal neuronal cells and isolated mitochondria, the present study investigated whether intramitochondrial inhibitor of NF-κB (IκB)/NF-κB signaling pathway was involved in mitochondrial dysfunction induced by Aβ. It was found that Aβ impaired mitochondrial function through a NF-κB-dependent signaling pathway. Intramitochondrial IκBα/NF-κB pathway, induced by Aβ, decreased the expression of cytochrome c oxidase subunit (COXIII) and inhibited COX activity. These results provide new insights into the mechanism underlying the neurotoxic effect of Aβ and open up new therapeutic perspectives for AD.  相似文献   

19.
Esophageal squamous cell carcinoma (ESCC) is one of the most malignant tumors. The aim of this study was to investigate the biology characteristics of ESCC by analyzing microRNA and mRNA expression profile. We used BRB-array tools to analyze the deregulated microRNA and mRNA between esophageal squamous cell carcinomas and paired normal adjacent tissues. We used miRTrail and protein–protein interaction methods to explore the related pathways and networks of deregulated microRNA and mRNA. By combining the results of pathways and networks, we found that the deregulated microRNA and their deregulated target mRNA are enriched in the following pathways: DNA replication, cell cycle, ECM-receptor interaction, focal adhesion, mismatch repair, and pathways in cancer. The results showed that many deregulated microRNAs and mRNAs may play a vital role in the pathogenesis of ESCC, and the systems biology approach is very helpful to explore molecular mechanism of ESCC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号