首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The paper reviews the data on diapause and related phenomena in stink bugs (Heteroptera: Pentatomidae). Using stink bugs as examples, the consecutive stages of the complex dynamic process of diapause (such as diapause preparation, induction, initiation, maintenance, termination, post-diapause quiescence, and resumption of direct development) are described and discussed. Out of 43 pentatomid species studied in relation to diapause in the Temperate Zone up to date, the majority (38 species) overwinter as adults, two species—as eggs, and another two species—as nymphs. Pentatoma rufipes is believed to be able to overwinter at different stages of its life cycle. Less than 5 % of pentatomid species are probably able to overwinter twice. Only five species have obligate diapause, others have the facultative one. Day-length and temperature are the main diapause inducing factors in the majority of species. The role of food in the control of seasonal development is essential in the pentatomid species feeding on plant seeds. In different species, different stages are sensitive to day-length. Some pentatomids retain sensitivity to photoperiod even after diapause, others lose it and become photo-refractory (temporarily or permanently). In Pentatomidae, such seasonal adaptations as photoperiodic control of nymphal growth rates, seasonal body colour change, migrations, and summer diapause (aestivation) are widely represented, whereas wing and/or wing muscle polymorphism has not been reported yet. In the subfamily Podopinae, induction of facultative reproductive winter diapause is under the control of photoperiod and temperature. All species feed on seeds and their seasonal development to a great extent reflects availability of food. However, the same food preferences and pattern of seasonal development are also characteristic to many species from the subfamily Pentatominae. All species of the subfamily Asopinae are predators. Among them, Picromerus bidens and Apateticus cynicus have obligate embryonic winter diapause, which is rear among true bugs. At the same time, A. cynicus and Podisus maculiventris belong to the same tribe but have different types of diapause: obligate embryonic diapause in A. cynicus and facultative adult diapause in P. maculiventris. Other Asopinae species studied up to date have facultative adult diapause controlled by photoperiod and temperature with probably only one exception: in Andrallus spinidens, adult diapause is controlled by temperature, and photoperiod plays only a secondary role. Thus, in spite of the similar habits and feeding types among Asopinae, the species of this subfamily have different types of diapause and the latter is controlled by different factors. In the subfamily Pentatominae, most species overwinter as adults and induction of their diapause is controlled by the long-day type photoperiodic response, in spite of the differences in their feeding preferences (within phytophagy). However, there are some exceptions in this subfamily, too: Palomena prasina, P. angulosa and Menida scotti have obligate diapause, which conditions univoltinism in these pentatomids. In M. scotti, only females have obligate adult diapause, whereas males remain physiologically active through the whole winter, this pattern being unusual for Heteroptera. The univoltine seasonal cycle of this species with summer diapause (aestivation) and apparent migrations is similar to that of shield bugs (Scutelleridae). According to the analysis of seasonal development, the evolution of seasonal adaptations in Pentatomidae does not directly reflect their phylogeny. However, individual genera, small tribes or even subfamilies have similar complexes of seasonal adaptations. At the same time, Pentatominae is a large and apparently collected taxon, but most of species in this subfamily have the same facultative adult diapause.  相似文献   

2.
Diapause, a strategy to endure unfavourable conditions (e.g. cold winters) is commonly found in ectothermic organisms and is characterized by an arrest of development and reproduction, a reduction of metabolic rate, and an increased resistance to adversity. Diapause, in addition to adaptations for surviving low winter temperatures, significantly influences phenology, voltinism and ultimately population growth. We review the literature on diapause and overwintering behaviour of two bark beetle species that affect spruce‐dominated forests in the northern hemisphere, and describe and compare how these strategies can influence population dynamics. The European spruce bark beetle Ips typographus (L.) (Coleoptera, Curculionidae) is the most important forest pest of Norway spruce in Europe. It enters an adult reproductive diapause that might be either facultative or obligate. Obligate diapausing beetles are considered strictly univoltine, entering this dormancy type regardless of environmental cues. Facultative diapausing individuals enter diapause induced by photoperiod, modified by temperature, thus being potentially multivoltine. The spruce beetle Dendroctonus rufipennis (Kirby) (Coleoptera: Curculionidae) infests all spruce species in its natural range in North America. A facultative prepupal diapause is averted by relatively warm temperatures, resulting in a univoltine life cycle, whereas cool temperatures induce prepupal diapause leading to a semivoltine cycle. An adult obligate diapause in D. rufipennis could limit bi‐ or multivoltinism. We discuss and compare the influence of diapause and overwinter survival on voltinism and population dynamics of these two species in a changing climate and provide an outlook on future research.  相似文献   

3.
Persistence and thriving of univoltine, herbivore insect species of the temperate zone rely on obligate diapause response that ensures winter survival and synchronization with host phenology. We used a stenophagous fruit fly (Rhagoletis cerasi) with obligate pupae diapause to determine genetic and environmental effects on diapause intensity of geographically isolated populations with habitat heterogeneity. Pupae from two Greek and one German populations with various gene flow rates were exposed at five constant chilling temperatures (0–12 °C) for different durations and then incubated at a high temperature until all adults have emerged. Pupae diapause intensity differs among Greek and German populations, suggesting an adaptive response to habitat heterogeneity (mostly differences in phenology patterns of local host cultivars). Moderately warm winter temperatures, such as 8 °C, promote diapause termination in all three populations. Insufficient chilling (short duration or warmer temperatures) regulates the expression of prolonged dormancy. Interestingly, extended chilling (longer than required for terminating diapause) ‘return’ pupae to another (facultative) cycle of dormancy enabling adults to emerge during the next appropriate ‘window of time’; a strategy first time reported for univoltine insects. Consequently, diapause duration of R. cerasi is determined both by i) the adaptive response to local climatic conditions (annual dormancy) and ii) the plastic responses to interannual climatic variability resulting in two types of long life cycles within populations, prolonged and facultative dormancy as response to insufficient chilling and extended exposure to chilling, respectively. Long life cycles are expressed as a part of dormancy bet‐hedging strategies of R. cerasi populations.  相似文献   

4.
Analysis of data on seasonal development of noctuid moths of the subfamily Plusiinae shows that the control of their seasonal cycles is poorly understood. At the same time, the available data demonstrate considerable diversity of the seasonal patterns of Plusiinae species from different regions. The homodynamic type of seasonal development has been found in Trichoplusia ni and Ctenoplusia agnata of the tribe Argyrogrammatini and in Autographa gamma of the Plusiini. The seasonal development of these southern noctuids is accompanied by regular interzonal migrations of flying adults. When spreading northwards, they can produce a different number of annual generations, depending on the local climatic conditions, and establish temporary local populations whose longevity is limited by the available thermal resources. Adults of some species may fly back southwards, but it is more likely that individuals from temporary local populations cannot survive long winters and are destined to die. The heterodynamic type of seasonal cycles allows insects to survive in the regions with pronounced seasonality of climate. This type of seasonal development includes univoltine, multivoltine, and semivoltine seasonal cycles. Univoltine seasonal cycles with obligate diapause are known in Autographa buraetica, A. excelsa, and Syngrapha ain (Plusiini). Diapause provides tolerance to both low temperatures and a prolonged period when food is unavailable. In Syngrapha ottolenguii (Plusiini), the same result is achieved by inclusion of two photoperiodically controlled diapauses (winter larval and summer adult ones) into the life cycle. The semivoltine seasonal cycle has been reported in only one species of Plusiinae, namely Syngrapha devergens. Larvae of this moth overwinter twice before pupation. Multivoltinism is common in the tribe Plusiini. Depending on the latitude, different species of this tribe can produce up to four generations per year and overwinter as middle-instar larvae in the state of facultative diapause. However, the characteristics of diapause vary substantially between the species: diapause can be deep and stable (as in Diachrysia chrysitis, Plusiini) or unstable and thus not ensuring successful overwintering and steady population growth (as in Macdunnoughia confusa, Plusiini). The seasonal adaptations known in Plusiinae include migrations, winter and summer diapauses, photoperiodic control of larval growth rates, and seasonal polyphenism of larval body coloration. In general, seasonal adaptations of Plusiinae are determined by local environmental conditions and only loosely associated with the systematic position of particular taxa. Only the tribe Abrostolini stands apart from other taxa of Plusiinae: moths of this tribe differ not only in morphology but also in peculiarities of their seasonal development, because all the species of this tribe overwinter as pupae and their seasonal cycles are therefore different from those of the rest of Plusiinae.  相似文献   

5.
Dissection ofChilocorus females collected in citrus groves at different times of the year reveals a considerable decline in ovogenesis during mid-summer and winter. This decline is not an innate character of the summer or winter generation beetles but is caused by climatic factors, so should not be expressed as aestivation or hibernation. Decreased ovogenesis seems to be the main factor governingChilocorus population decrease during summer. Changes in photoperiod do not hinder egg laying or induce any diapause.chilocorus bipustulatus represents in Israel a potentially multivoltine species whose reproduction during mid-summer or winter is simply slowed down due to unfavorable conditions.  相似文献   

6.
Information on seasonal adaptations in the life cycles of harvestmen (order Opiliones) summarized in this review reveals a great diversity of these arachnids with respect to duration, voltinism, and phenology of their life cycles, as well as to the number and ontogenetic position of the dormant stages required for survival during the winter season and also for synchronizing development with seasonal climate rhythms. Most harvestmen have stenochronous development with univoltine life cycles synchronized by arrest of development in hibernating eggs or (rarely) diapausing nymphs and adults. The number and arrangement of dormant stages represent stable species-specific traits, with some rare cases of interpopulation differences (e.g., in Phalangium opilio). Eurychronous harvestmen exhibit the year-round occurrence of main ontogenetic stages which show equal abilities for either active development or quiescence (depending upon the external factors). Two alternative types of development arrest are common in univoltine opilionids: (1) diapause induced at the early stage of embryogenesis and terminated during cooling (in Opilio parietinus and eleven other species) with transformation into postdiapause quiescence; (2) cold quiescence enforced by low temperatures at the last stage of egg development just before hatching (in Phalangium opilio and four other species). In conclusion, the systems of seasonal adaptations in Opiliones are compared with those in other arachnids, insects, and crustaceans. Some promising directions in the study of seasonal adaptations in opilionid life cycles are suggested.  相似文献   

7.
The seasonal cycle of Picromerus bidens L. (Heteroptera: Pentatomidae) is usually considered to be univoltine with an obligatory winter egg diapause. Seasonal adaptations of the species were studied in the laboratory and in field experiments. When reared under short-day photoperiodic conditions (L12:D12 and L14:D10), all females began to lay eggs synchronously soon after their emergence. However, in the females reared under long-day conditions (L18:D6 and L20:D4) and outdoors in June–July, oviposition was significantly delayed. This delay in reproduction induced by photoperiodic conditions and then spontaneously terminated was considered to be aestivation. Egg batches laid by females in the laboratory and in the field were kept at 25 °C for two months. From 30.8 to 93.8% of batches contained eggs which hatched without cold treatment between day 14 and 60 after oviposition. The proportion of eggs hatched was 17.7 to 20.9% in the short-day regimes, while it was significantly less (5.7 to 6.0%) under long-day conditions. It is concluded that in some eggs diapause is of low intensity and that if under natural conditions the first batches had been laid at the end of June, nymphs would have hatched at least from some eggs during the same season even without cold treatment. Such untimely hatching would have resulted in the death of nymphs and adults unprepared for overwintering. A photoperiodic response which induces aestivation in the early emerging adults in June–August may prevent early oviposition and occurrence of a second generation and thus maintains univoltinism in P. bidens.  相似文献   

8.
Photoperiodic control of diapause induction was systematically investigated in the cabbage butterfly, Pieris melete, which enters summer and winter diapause as a pupa. Summer and winter diapause are induced principally by short and long scotophases, respectively; the intermediate scotophases (11-12 h) permit pupae to develop without diapause. Photoperiodic responses under 24-h light-dark cycles at 16.9, 18, 20 and 22 °C showed that the hibernation response was temperature compensated, whereas aestivation response was strongly temperature-dependent. The incidence of diapause for both aestivation and hibernation showed a decline at the ultra-short and ultra-long scotophases. Experiments using non-24-h light-dark cycles showed that the length of the scotophase played an essential role in the determination of diapause. The highest photosensitivity differed under hibernation and aestivation conditions. With a 3 × LD 12:12 interruption, a maximal inhibition of aestivation occurred in the L3/2 stage, and of hibernation it occurred in the L4/0 stage. A long-night of LD 10:14 induced hibernation diapause but inhibited aestivation diapause and, conversely, a short-night of LD 14:10 inhibited hibernation diapause but induced aestivation diapause. With a 1-h light pulse at LD 11:13, a maximal inhibition of hibernation occurred 3 h before lights-on (late scotophase), whereas, with a 1-h light pulse at LD 12.5:11.5, a maximal induction of aestivation occurred 2-3 h after the onset of darkness (early scotophase). Nanda-Hamner and Bünsow experiments failed to reveal the involvement of a circadian system, suggesting that the photoperiodic time measurement for diapause induction in this butterfly resembles an hourglass-like timer or a damped circadian oscillator.  相似文献   

9.
Seasonal development and ecology of Anthocoridae are reviewed. Most of 500–600 species in the family are predacious or zoo-phytophagous, and a few other species are exclusively phytophagous or myrmecophilous. Some anthocorids are (and many others can potentially be) used as biological control agents in the Integrated Pest Management (IPM). Overwintering at the adult stage is typical of anthocorid bugs from the temperate zone (especially for the subfamily Anthocorinae). The known exceptions are the embryonic diapause in Tetraphleps abdulghanii, Temnostethus pusillus, and T. gracilis (Anthocorinae) and continuous development through all seasons (a homodynamic seasonal cycle) in Lyctocoris campestris and some species of Xylocoris (Lyctocorinae). In a number of species, especially in the genera Anthocoris and Orius, copulation occurs before overwintering and only females survive winter, a feature very unusual for Heteroptera and insects in general. Many anthocorid species are multivoltine in the temperate zone, producing several (up to 8 in some cases) generations per year. The number of generations typically decreases to 1 per year towards the north. Seasonal development of multivoltine species is chiefly controlled by daylength and temperature. All multivoltine anthocorids of the temperate zone studied to date have photoperiodic response of a long-day type: the females reproduce under the long-day conditions, but enter diapause under the short-day conditions. Towards the south, the photoperiodic response gradually becomes weaker: some populations do not enter diapause even under the short-day conditions, especially at higher temperatures. Termination of diapause is poorly understood in anthocorids, but a number of species require low-temperature treatment for a few weeks prior to the start of oviposition. Alary and color polymorphism are rare in the family, and they have never been shown to be seasonal or environmentally controlled. Pronounced seasonal migrations and aggregation behavior also have never been reported in Anthocoridae. Summer diapause appears to be very unusual for the family, having been reported only in Tetraphleps abdulghanii. The seasonal change of host plants, known in some populations of Anthocoris nemorum and A. nemoralis, is also a seasonal adaptation unusual for Heteroptera. Seasonality of tropical and subtropical species is poorly studied, but anthocorids developing without winter diapause are considered promising agents for the biological control of arthropod pests. Further studies of ecophysiology of Anthocoridae will optimize application and mass rearing of these predators in IPM programs.  相似文献   

10.
Theoretically, asymmetric gene flow along an environmental gradient can limit species range expansion by keeping peripheral populations from locally adapting. However, few empirical studies have examined this potentially fundamental evolutionary mechanism. We address this possibility in the cricket Allonemobius socius, which exist along a season‐length gradient where the probability of producing a single generation per year (univoltinism) increases with latitude. As the probability of univoltinism increases northwards, populations are expected to hedge their bets by producing a greater proportion of diapause eggs when exposed to a mild diapause cue. However, gene flow from southern populations may disrupt local adaptation in the north by reducing the proportion of diapause eggs (expected to be 100% in pure univoltine environments). This may limit range expansion along the northern periphery where A. socius compete with A. fasciatus, a sister species that exhibits an invariant diapause‐only egg‐laying strategy. To assess the potential for range limitation, we examined diapause incidence (the proportion of diapause eggs produced under diapause conditions), gene flow symmetry and population structure across nine A. socius populations. We found that gene flow was asymmetric and biased northwards towards the periphery. Furthermore, peripheral populations that inhabited pure univoltine environments produced numerous nondiapause eggs (a southern, bivoltine diapause phenotype), which we assume to be a suboptimal phenotype. These patterns suggest that asymmetric gene flow along the gradient constrains adaptation in peripheral populations, potentially constraining species range expansion.  相似文献   

11.
The temperate‐zone butterfly Pararge aegeria can use three developmental pathways corresponding to different seasonal cohorts: (1) development with a pupal winter diapause resulting in early spring adults; (2) development with a larval winter diapause resulting in late‐spring adults and (3) direct development resulting in summer or second generation adults. In order to test adaptive predictions, we compared variation in flight‐ and thermoregulation‐related morphology among adult males and females from the three pathways using both field data (i.e. wild‐caught butterflies) and experimental breeding data (i.e. reared under different photoperiod regimes). Morphological patterns among the pathways were largely similar in the field and rearing data. Seasonal patterns differed between the sexes for most traits, including (relative) size measures and wing colour. Our results suggest sex‐related, adaptive seasonal plasticity for morphological traits related to flight behaviour in a multivoltine insect.  相似文献   

12.
Charanyca trigrammica is a univoltine species over its whole distribution range. To study the diapause-inducing factors, caterpillars were reared at 24°C and day lengths of 12, 13, 14, 15, 16, 17, and 18 h. In all the studied regimes, pupation was not recorded, suggesting an obligate diapause. However, the development was faster under short days. The threshold of this short-day photoperiodic response was ca 17 h. This type of environmental regulation of development may be considered a special feature of diapause occurring in the last larval instars. Hence, the obligate diapause in the last larval instars determines the univoltine cycle of Ch. trigrammica in Belgorod Province of Russia, ensuring successful hibernation of all individuals.  相似文献   

13.
Analysis of available information on the seasonal features of life cycles in pseudoscorpions (Arachnida, Pseudoscorpiones) shows that in the temperate climate of Europe with distinct seasonality, the development of these peculiar arachnids can be either eurychronous (= homodynamic), with a poorly pronounced seasonal arrangement, or stenochronous (= heterodynamic), with a distinct seasonal arrangement. This is similar to some other arachnids, particularly spiders and harvestmen. Eurychronous pseudoscorpions are characterized by the approximately year-round development (quite often with winter activity in the whole or part of the population), an overlapping of consecutive generations, the presence of alternative development with or without the dormant state (at all the postembryonic life cycle stages), lack of brood chamber production by females, and the start of free-living life at the protonymphal stage. Stenochronous pseudoscorpions, on the contrary, possess clearly arranged (usually univoltine) development with overwintering deutonymphs and tritonymphs (more rarely adults), a clear separation of adjacent generations, the production of brood chambers where the regressive protonymphs develop until their molt into deutonymphs, and the start of free-living life at the deutonymphal stage. These two types of life cycles are exemplified by two pseudoscorpions from South England, namely Neobisium muscorum with eurychronous development, and Chthonius orthodactylus with stenochronous, univoltine development (Goddard, 1976). There is no correlation between the taxonomic position and the seasonal characters of life cycles in representatives of Neobisiidae, Chthoniidae, and Chernetidae. There is, instead, a close connection between the eco-physiological state of these arachnids and the type of their gas exchange (continuous, diffusive and non-cyclic in the active state, as opposed to discontinuous, with cyclic emission of CO2 and uptake of O2 in the dormant state). The latter information may be useful for distinguishing different kinds of dormancy (diapause and quiescence) in these arachnids.  相似文献   

14.
The ants L. semenovi has been found to belong to species with endogenous-heterodynamic seasonal life cycles with the obligate diapause induced predominantly by factors internal for a colony, whereas external ecological factors (photoperiods and temperature) produce merely modifying effects by accelerating or delaying the diapause onset. The photoperiodic and temperature regulation of diapause induction in larvae and queens is shown. Under effect of short days and low temperature the periods of larval pupation and queen oviposition in a colony are shortened markedly, i.e., the diapause of larvae and queens occurs earlier. The daily rhythms of temperature 15/25°C and particularly 20/30°C as compared with constant temperatures 20 and 25°C that correspond to the mean circadian temperatures of the thermorhythm, inhibit manifestations of the short day effects by stimulating the non-diapause development and increasing duration of the seasonal development cycle of ant colonies. The L. semenovi photoperiodic reaction is quantitative, as development and pupation of larvae and egg-laying of queens cease sooner or later under both the short and the long days, but in the latter case significantly later. Thus L. semenovi is one more example among very rare ant species that are revealed to have the photoperiodic regulation of the colony development seasonal cycle.  相似文献   

15.
The multivoltine bruchid Kytorhinus sharpianus shows seasonal phenotypic plasticity in adult longevity, the preoviposition period, and the number of eggs laid without feeding between the diapausing and nondiapausing generations. This study compared the norms of reaction in three life-history traits between the univoltine Aomori and multivoltine Mitsuma populations. The directions of response in the norms of reaction were similar in both populations, although their response curves differed between populations. This result indicated a potential for variation in seasonal phenotypic plasticity in the univoltine population. However, the variation in the norms of reaction was small in both populations, suggesting strong selection pressure on the plasticity in the multivoltine population. These results also suggest that the univoltine Aomori population may have originated from a multivoltine population.  相似文献   

16.
An original classification of the life cycles of ground beetles from Western Palaearctic is proposed. The classification is based on a combination of five criteria: duration, number of generations per season, phenology of reproduction, stability, and repeatability of reproduction. According to the individual lifespan, the cycles are subdivided into annual and biennial ones. The annual life cycles may be uni-and bivoltine, whereas biennial ones are always univoltine. By the time of reproduction, winter-spring, spring, spring-summer, early summer, summer, late summer, summer-autumnal, autumnal, autumn-winter, winter, and aseasonal species are distinguished. The biennial and bivoltine cycles may be of both facultative and obligate nature. Species living only one season and having a continuous reproductive period are designated as semelparous, while those breeding during two or more years or having several distinct periods of reproduction in one season, as iteroparous. By now, 30 variants of life cycles in Carabidae from western Palaearctic have been established. Repeated similarly directed modifications of the life cycle may produce essentially different seasonal rhythms in some individuals. In this case, two subpopulation groups usually appear within the population. Under the most unfavorable conditions, these groups become practically isolated and hibernate at different ontogenetic stages. The individual development in each of these groups takes two years with the same seasonal rhythm. Among the types considered, only obligate-bivoltine life cycles are always polyvariant, but annual univoltine and obligate-biennial ones are always univariant. The facultative-bivoltine and biennial life cycles may be realized as uni-and polyvariant ones, depending on the environmental conditions.  相似文献   

17.
Among univoltine insects that experience diapause, differences in emergence timing between adult males and females are expected to be dictated by sex‐specific developmental factors. In multivoltine insects without a diapause, there is often an additional relationship between the date of oviposition and the date of adult emergence. Differences between male and female emergence timing in the latter case can therefore be influenced by female sex‐allocation decisions. In the present study, it is shown that eggs of a univoltine parasitoid wasp Diachasma alloeum Muesebeck (Hymenoptera: Braconidae) that are laid earlier also eclose earlier during the subsequent year, independent of (although complementary to) sex‐related differences in development time. The implications of this pattern for sex allocation decisions by female univoltine parasitoids are discussed.  相似文献   

18.
The southern green stink bug Nezara viridula (L.) (Heteroptera: Pentatomidae) has long attracted attention not only as a serious pest of numerous agricultural crops, but also as a species expanding its range in many parts of the world. Nezara viridula has also been widely used as a model in different experimental studies. The present review focuses on reproductive (i.e. adult) winter diapause, which is the pivotal element of the species' seasonal cycle. Results from numerous field experiments and observations, as well as laboratory ecophysiological investigations conducted during the few last decades, are analyzed and interpreted. Experimental findings are used to describe in detail the dynamics of physiological changes during overwintering. Reproductive diapause in N. viridula is controlled in both sexes by photoperiodic conditions. The induction of diapause is associated with a reversible change of body colour from green or yellow to russet (or brown). The proper timing of adult emergence and the induction of diapause, as well as the size of adults, is vitally important for successful overwintering. Nezara viridula has been shown to respond strongly to the current trend in climate change by shifting the limit of its northern range, particularly in central Japan. Analysis of historic climate data suggests that the environmental conditions during the last few decades have become more favourable for the overwintering survival of N. viridula in many locations in central Japan. This has likely promoted the northward spread of the species. The relationships between reproductive diapause, reversible body colour change, overwintering success and the recent range expansion are analyzed. Perspectives of the range dynamics of the species are discussed in light of further predicted climate change.  相似文献   

19.
Obligate lithotrophs (e.g., ammonia oxidizers) and facultative lithotrophs (e.g., CO and hydrogen oxidizers) collectively comprise a phylogenetically diverse functional group that contributes significantly to carbon and nitrogen cycles in soils and plays important roles in trace gas dynamics (e.g., carbon monoxide and nitrous and nitric oxides) that affect tropospheric chemistry and radiative forcing. In spite of their diverse physiologies, facultative and obligate lithotrophs typically possess the Calvin-Benson-Bassham cycle enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisCO). In an effort designed to understand the structure of lithotrophic communities in soil, genomic DNA extracts from surface (0 to 2 cm) and subsurface (5 to 7 cm) soils have been obtained from two sites in a Georgia agroecosystem (peanut and cotton plots) and an unmanaged pine stand (>50 years old). The extracts have been used in PCR amplifications of the cbbL gene for the rubisCO large subunit protein. cbbL PCR products were cloned, sequenced, and subjected to phylogenetic and statistical analyses. Numerous novel lineages affiliated with the form IC clade (one of four form I rubisCO clades), which is typified by facultative lithotrophs, comprised lithotrophic communities from all soils. One of the form IC clone sequences clustered with a form IC clade of ammonia-oxidizing Nitrosospira. Distinct assemblages were obtained from each of the sites and from surface and subsurface soils. The results suggest that lithotrophic populations respond differentially to plant type and land use, perhaps forming characteristic associations. The paucity of clone sequences attributed to ammonia-oxidizing bacteria indicates that even though ammonia oxidation occurs in the various soils, the relevant populations are small compared to those of facultative lithotrophs.  相似文献   

20.
《Biological Control》2002,23(2):115-120
The effect of seasonal changes in temperature and photoperiod on the interaction of Nezara viridula (Hemiptera: Pentatomidae) and its egg parasitoid Trissolcus basalis (Hymenoptera: Scelionidae) was investigated in the laboratory. We found no evidence of reproductive diapause in N. viridula under simulated Hawaiian summer and winter conditions. Further, although “diapause” coloration was obtained in the laboratory, it was not correlated with reproductive status. Studies of the survival of T. basalis provided with honey under the same simulated conditions showed that under summer conditions, only 2.1% of the female and 13.5% of the male population were still alive by 60 days. When provided with N. viridula egg masses at 30 days, 79.4% of the eggs were parasitized in a 3-h period. Under winter conditions, 54.3, 28.3, and 14.5% of the females were alive at 30, 60, and 90 days after adult emergence. When provided with N. viridula egg masses at 30, 60, and 90 days for 3 h, 57.6, 32.8, and 47.1% of the eggs were successfully parasitized. These studies suggest the limiting factor in the interaction of T. basalis and N. viridula is not reproductive diapause, but instead the ability of T. basalis to survive summer conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号