首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spiders (Araneae) play key roles in ecosystems, not only as common and abundant generalist predators, but also as major contributors to biodiversity in many areas. In addition, due to their short generation times and high mobility, spiders respond rapidly to small changes in their environment, potentially making them useful indicators for restoration monitoring. However, few studies have focused on spider responses to grassland restoration in the United States. We compared degraded, native, and restored grassland sites to examine how spider communities and habitat respond to arid grassland restoration. We also examined how responses varied with the age of the restoration project. Spider communities in native sites differed from those in restored and degraded sites in several ways: native sites had fewer spiders and a different community composition than degraded and restored sites. However, native and restored sites had more species than degraded sites. Chronosequence data showed trends for lower abundance, higher species richness, and changing community composition as restoration projects mature. Several habitat variables were closely linked to variation in spider communities including cover of invasive annual grasses, litter, and biological soil crusts. Our data suggest that spider and vegetation responses to grassland restoration efforts can be successful in the long term—with resulting communities becoming more similar to native ones—and that spiders are useful indictors of grassland restoration. Our results also suggest that restoration may involve balancing trade‐offs between ecosystem services, with potential losses in predatory control offset by increases in biodiversity with restoration effort.  相似文献   

2.
Factors regulating the diversity and composition of soil microbial communities include soil properties, land cover and climate. How these factors interact at large scale remains poorly investigated. Here, we used an extensive dataset including 715 locations from 24 European countries to investigate the interactive effects of climatic region, land cover and pH on soil bacteria and fungi. We found that differences in microbial diversity and community composition between land cover types depended on the climatic region. In Atlantic, Boreal and Continental regions, microbial richness was higher in croplands and grasslands than woodlands while richness in Mediterranean areas did not vary significantly among land cover types. These differences were further related to soil pH, as a driver of bacterial and fungal richness in most climatic regions, but the interaction of pH with land cover depended on the region. Microbial community composition differed the most between croplands and woodlands in all regions, mainly due to differences in pH. In the Mediterranean region, bacterial communities in woodlands and grasslands were the most similar, whereas in other regions, grassland and cropland-associated bacteria showed more similarity. Overall, we showed that key factors interact in shaping soil microbial communities in a climate-dependent way at large scale.  相似文献   

3.
Assessing the community‐level consequences of ecological restoration treatments is essential to guide future restoration efforts. We compared the vegetation composition and species richness of restored sites that received a range of restoration treatments and those of unrestored sites that experienced varying levels of disturbance. Our study was conducted in the industrially degraded landscape surrounding Sudbury, Ontario, Canada. The Great Lakes–St. Lawrence Forest once present in this area was degraded through logging, mining, and smelting activities beginning in the late 1800s until restoration of the most visibly degraded areas began in 1974. Restoration treatments ranged from simple abiotic enhancements to complex, multistage revegetation treatments using native and non‐native species, which included fertilizing, spreading of ground dolomitic limestone, understory seeding, and tree planting. Canonical correspondence analysis was used to determine which restoration treatments explained differences in the community structure among sites. We found that native understory vascular species richness was similar in restored sites that received more complex restoration treatments and unrestored sites that were mildly disturbed; however, the role of planted trees and non‐native species in the restored communities remains unclear. Understory vascular seeding played a key role in determining community composition of vascular understory and overstory communities, but the time since restoration commenced was a more important factor for nonvascular communities because they received no direct biotic enhancements. The use of non‐native species in the vascular seed mix seems to be slowly encouraging the colonization of native species, but non‐natives continue to dominate restored sites 25 years after restoration began.  相似文献   

4.
The Brazilian Savanna, also known as “Cerrado”, is the richest and most diverse savanna in the world and has been ranked as one of the main hotspots of biodiversity. The Cerrado is a representative biome in Central Brazil and the second largest biome in species diversity of South America. Nevertheless, large areas of native vegetation have been converted to agricultural land including grain production, livestock, and forestry. In this view, understanding how land use affects microbial communities is fundamental for the sustainable management of agricultural ecosystems. The aim of this work was to analyze and compare the soil bacterial communities from the Brazilian Cerrado associated with different land use systems using high throughput pyrosequencing of 16S rRNA genes. Relevant differences were observed in the abundance and structure of bacterial communities in soils under different land use systems. On the other hand, the diversity of bacterial communities was not relevantly changed among the sites studied. Land use systems had also an important impact on specific bacterial groups in soil, which might change the soil function and the ecological processes. Acidobacteria, Proteobacteria, and Actinobacteria were the most abundant groups in the Brazilian Cerrado. These findings suggest that more important than analyzing the general diversity is to analyze the composition of the communities. Since soil type was the same among the sites, we might assume that land use was the main factor defining the abundance and structure of bacterial communities.  相似文献   

5.
Restoration efforts are being implemented globally to mitigate the degradation and loss of wetland habitat; however, the rate and success of wetland vegetation recovery post‐restoration is highly variable across wetland classes and geographies. Here, we measured the recovery of plant diversity along a chronosequence of restored temporary and seasonal prairie wetlands ranging from 0 to 23 years since restoration, including drained and natural wetlands embedded in agricultural and natural reserve landscapes in central Alberta, Canada. We assessed plant diversity using the following structural indicators: percent cover of hydrophytes, native and non‐native species, species richness, and community composition. Our findings indicate that plant diversity recovered to resemble reference wetlands in agricultural landscapes within 3–5 years of restoration; however, restored wetlands maintained significantly lower species richness and a distinct community composition compared to reference wetlands located within natural reserves. Early establishment of non‐native species during recovery, dispersal limitation, and depauperated native seed bank were probable barriers to complete recovery. Determining the success of vegetation recovery provides important knowledge that can be used to improve restoration strategies, especially considering projected future changes in land use and climate.  相似文献   

6.
Given the important role that soil microbes play in structuring plant communities and mediating ecosystem functions, there is growing interest in harnessing microbial communities to restore degraded ecosystems. Dune restorations, in particular, may benefit from native soil amendments because microbial diversity and abundance are very low in unvegetated areas. In an outdoor mesocosm experiment simulating Texas Gulf Coast dune restorations, we tested how native soil microbial amendments and restored diversity of foundational grasses influenced three key restoration responses: plant performance, plant diversity (including the colonization of native forbs), and soil stability. We found that native microbial amendments increased plant diversity and have the potential to increase soil stability, but this came at the cost of decreased plant biomass. Our results suggest that soil enemies in the native microbial amendments increased plant diversity by decreasing the performance of the dominant grass species and that arbuscular mycorrhizal fungi in the native microbial amendments increased the density of fungal hyphae in the soil, which can increase soil stability. Depending on the goals of the restoration, native soil microbial amendments may be a simple and inexpensive method to provide restoration benefits.  相似文献   

7.
The Pampa biome is considered one of the main hotspots of the world’s biodiversity and it is estimated that half of its original vegetation was removed and converted to agricultural land and tree plantations. Although an increasing amount of knowledge is being assembled regarding the response of soil bacterial communities to land use change, to the associated plant community and to soil properties, our understanding about how these interactions affect the microbial community from the Brazilian Pampa is still poor and incomplete. In this study, we hypothesized that the same soil type from the same geographic region but under distinct land use present dissimilar soil bacterial communities. To test this hypothesis, we assessed the soil bacterial communities from four land-uses within the same soil type by 454-pyrosequencing of 16S rRNA gene and by soil microbial activity analyzes. We found that the same soil type under different land uses harbor similar (but not equal) bacterial communities and the differences were controlled by many microbial taxa. No differences regarding diversity and richness between natural areas and areas under anthropogenic disturbance were detected. However, the measures of microbial activity did not converge with the 16S rRNA data supporting the idea that the coupling between functioning and composition of bacterial communities is not necessarily correlated.  相似文献   

8.
为了揭示人工林对土壤微生物环境的作用机理,利用高通量测序技术,比较了宁南山区刺槐、河北杨、油松、青海云杉和自然恢复林地的土壤真菌、细菌群落组成及多样性,分析了土壤理化性质与优势菌群的关系.结果 表明:1)不同恢复模式土壤真菌优势菌门为子囊菌门、担子菌门、被孢霉门、未分类真菌,占总真菌群落的90%以上;细菌优势菌门为放线...  相似文献   

9.
The restoration of disturbed ecosystems is challenging and often unsuccessful, particularly when non‐native plants are abundant. Ecosystem restoration may be hindered by the effects of non‐native plants on soil biogeochemical characteristics and microbial communities that persist even after plants are removed. To examine the importance of soil legacy effects, we used experimental restorations of Florida shrubland habitat that had been degraded by the introduction of non‐native grasses coupled with either mechanical disturbance or pasture conversion. We removed non‐native grasses and inoculated soils with native microbial communities at each degraded site, then examined how habitat structure, soil nitrogen, soil microbial abundances, and native seed germination responded over two years compared to undisturbed native sites. Grass removal treatments effectively restored some aspects of native habitat structure, including decreased exotic grass cover, increased bare ground, and reduced litter cover. Soil fungal abundance was also somewhat restored by grass removals, but soil algal abundance was unaffected. In addition, grass removal and microbial inoculation improved seed germination rates in degraded sites, but these remained quite low compared to native sites. High soil nitrogen persisted throughout the experiment regardless of treatment. Many treatment effects were site‐specific, however, with legacies in the more degraded vegetation type tending to be more difficult to overcome. These results support the need for context‐dependent restoration approaches and suggest that the degree of soil legacy effects may be a good indicator of restoration potential.  相似文献   

10.
The Cerrado biome in the Sete Cidades National Park, an Ecological Reserve in Northeastern Brazil, has conserved its native biodiversity and presents a variety of plants found in other savannas in Brazil. Despite this finding the soil microbial diversity and community structure are poorly understood. Therefore, we described soil bacterial diversity and distribution along a savanna vegetation gradient taking into account the prevailing environmental factors. The bacterial composition was retrieved by sequencing a fragment of the 16S ribosomal RNA gene. The bacterial operational taxonomic units (OTUs) were assigned to 37 different phyla, 96 classes, and 83 genera. At the phylum level, a core comprised by Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, Verrucomicrobia and Planctomycetes, was detected in all areas of Cerrado. ‘Cerrado stricto sensu’ and ‘Cerradao’ share more similarities between edaphic properties and vegetation and also present more similar bacterial communities, while ‘Floresta decidual’ and ‘Campo graminoide’ show the largest environmental differences and also more distinct bacterial communities. Proteobacteria (26%), Acidobacteria (21%) and Actinobacteria (21%) were the most abundant phyla within the four areas. All the samples present similar bacteria richness (alpha diversity) and the observed differences among them (beta diversity) were more related to the abundance of specific taxon OTUs compared to their presence or absence. Total organic C, N and P are the main abiotic factors structuring the bacterial communities. In summary, our findings show the bacterial community structure was clearly different across the Cerrado gradient, but that these environments share a bacterial phylum-core comprising Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia and Planctomycetes with other Brazilian savannas.  相似文献   

11.
Grassland desertification seriously threatens sustainable economic and social development. Much attention has been paid to the control of grassland desertification, and even to the restoration and reconstruction of the grassland. Vegetation restoration is considered to be a very effective solution. Soil sustains an immense diversity of microbes, and the characteristics of soil microbial communities are sensitive indicators of soil. It is important to understand the relationship between vegetation and soil microbial diversity during the restoration process. Soil microbial, which is the main index to evaluate soil quality, plays a significant role in ecosystem and soil microbial diversity is the important one of global diversity. Exploring the effects of different vegetation patterns on soil microbial diversity can provide scientific bases and technical support for systemic and impersonal assessment of the best vegetation restoration patterns, as well as the vegetation restoration and reconstruction of Hulunbeier sandy land. Based on PCR–DGGE technology, a case study was carried out to investigate the effects of five different vegetation restoration patterns on soil microbial functional diversity after 4 years in sandy land in Hulunbeier, China. The five vegetation restoration patterns included mono-cultivar planting of Agropyron cristatum (UA), mono-cultivar planting of Hedysarum fruticosum (UH), mono-cultivar planting of Caragana korshinskii (UC), mixed-cultivar planting of Agropyron cristatum and Hedysarum fruticosum (AC) and mixed-cultivar planting of Agropyron cristatum, Hedysarum fruticosum, Caragana korshinskii and Elymus nutans (ACHE). Completely degraded sandy land was used as control.The results indicated that the vegetation restoration increased the genetic diversity of soil bacterial community obviously, and the structure of soil bacterial community was changed. The results of phylogenetic analysis suggested that the bacterial community in Hulunbeier sandy land mainly attributed to Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, and Acidobacteria. The dominant groups were Proteobacteria and Bacteroidetes. The effects of different vegetation type on soil bacterial community structures were different.  相似文献   

12.
Given that land‐use change is the main cause of global biodiversity decline, there is widespread interest in adopting land‐use practices that maintain high levels of biodiversity, and in restoring degraded land that previously had high biodiversity value. In this study, we use ant taxonomic and functional diversity to examine the effects of different land uses (agriculture, pastoralism, silviculture and conservation) and restoration practices on Cerrado (Brazilian savanna) biodiversity. We also examine the extent to which ant diversity and composition can be explained by vegetation attributes that apply across the full land management spectrum. We surveyed vegetation attributes and ant communities in five replicate plots of each of 13 land‐use and restoration treatments, including two types of native vegetation as reference sites: cerrado sensu stricto and cerradão. Several land‐use and restoration treatments had comparable plot richness to that of the native reference habitats. Ant species and functional composition varied systematically among land‐use treatments following a gradient from open habitats such as agricultural fields to forested sites. Tree basal area and grass cover were the strongest predictors of ant species richness. Losses in ant diversity were higher in land‐use systems that transform vegetation structure. Among productive systems, therefore, uncleared pastures and old pine plantations had similar species composition to that occurring in cerrado sensu stricto. Restoration techniques currently applied to sites that were previously Cerrado have focused on returning tree cover, and have failed to restore ant communities typical of savanna. To improve restoration outcomes for Cerrado biodiversity, greater attention needs to be paid to the re‐establishment and maintenance of the grass layer, which requires frequent fire. At the broader scale, conservation planning in agricultural landscapes, should recognize the value of land‐use mosaics and the risks of homogenization.  相似文献   

13.
A primary goal of ecological restoration is often to return processes and functions to degraded ecosystems. Soil, while often ignored in restoration, supports diverse communities of organisms and is a fundamental actor in providing ecosystem processes and services. We investigated the impact of seeding and livestock grazing on plant communities, soil microorganisms, and soil fertility 3 years after the restoration of a disturbed pipeline corridor in southeastern Arizona. The initial soil disturbance and topsoil treatment, regardless of seeding or grazing, was the most influential factor in determining differences in both plant and microbial communities. Compared with the control, the disturbed and restored sites had greater plant species richness, greater total herbaceous plant cover, greater soil organic matter, higher pH, and differed in soil nutrients. Bacteria and fungi appeared to generally correlate with micro‐environment and soil physiochemical properties rather than specific plant species. The undisturbed control had a smaller proportion of bacterial functional groups associated with the breakdown of plant biomass (polysaccharide decomposition) and a smaller proportion of arbuscular mycorrhizal fungi (AMF) compared with disturbed and restored sites. The ability of the unseeded disturbed site to recover robust vegetation may be due in part to the high presence of AMF. These differences show selection for soil microorganisms that thrive in disturbed and restored sites and may contribute to increased plant productivity. Restoration of specific plant species or ecological processes and services would both benefit from better understanding of the impacts of disturbance on soil microorganisms and soil fertility.  相似文献   

14.
不同森林恢复类型对土壤微生物群落的影响   总被引:42,自引:4,他引:42  
为了评价不同森林恢复类型与方式对南方红壤丘陵区退化生态系统土壤微生物群落的影响,借助氯仿熏蒸法、平板涂抹法和BIOLOG检测法,比较研究了4种森林恢复类型土壤微生物的群落特征.结果表明,4种森林恢复类型土壤微生物生物量碳、细菌数量差异显著,2项指标均以天然次生林土壤最高,人工林次之,荒地最差;碳源平均颜色变化率(AWCD法)和微生物代谢多样性指数(丰富度和多样性)在5种植被类型的土壤中也有明显差异,其趋势与微生物量碳、细菌数量基本相同;天然次生林土壤微生物群落利用碳源的整体能力和功能多样性比人工林和荒地强.相关分析表明,0~20和20~40cm土壤微生物的代谢多样性与根系生物量紧密相关(r=0.933,P<0.05;r=0.925,P<0.05).自然恢复更有利于改善土壤微生物的结构和功能.  相似文献   

15.
人类活动导致黄土高原土地退化和生物多样性丧失,进而降低了生态系统功能。人工造林是该区域退化土地恢复的重要措施。现有的生态修复研究通常侧重于微生物群落物种多样性的恢复对单一生态系统功能的影响,而忽略了微生物间存在的相互作用与生态系统多功能性(Ecosystem multifunctionality, EMF)的关系。为探究造林恢复过程中土壤微生物多样性和网络复杂性与EMF的关系,本研究采用时空代换法(space-time substitution method),沿50年造林恢复时间序列,分析了黄土高原地区造林恢复对土壤微生物群落多样性、土壤微生物网络复杂性以及与土壤养分循环相关的10个生态系统功能指标的影响,明确了土壤微生物群落特征与EMF的关系。结果表明,随造林恢复时间序列的增加,土壤微生物群落的综合多样性、网络复杂性和EMF均呈现出显著增加后下降的趋势(P<0.05),其中土壤微生物综合多样性和网络复杂性在第8年达到最高值,EMF在第20年达到最大值。在未控制土壤环境因素时,细菌和古菌多样性与EMF无显著相关性,真菌多样性与EMF呈显著正相关(P<0.001);土壤微生...  相似文献   

16.
Invasive plants dramatically shift the structure of native wetland communities. However, less is known about how they affect belowground soil properties, and how those effects can vary depending on time since invasion. We hypothesized that invasion of a wetland by a widespread invasive plant (Typha × glauca) would result in changes in soil nutrients, denitrification, and bacterial communities, and that these effects would increase with time since invasion. We tested these hypotheses by sampling Typha-invaded sites of different ages (~40, 20, and 13 years), a Typha-free, native vegetation site, and a restored site (previously invaded ~30–40 years ago) but that had Typha return within 2 years of the restoration. At each site, we measured Typha stem density, plant species richness, soil nutrients, denitrification rates, and the abundance and composition of bacterial denitrifier communities. All Typha-dominated sites had the least plant species richness regardless of time since invasion. Additionally, sites that were invaded the longest exhibited significantly higher concentrations of soil organic matter, nitrate, and ammonium than the native site. In contrast, denitrification was higher in sites invaded more recently. Denitrifier diversity for the nirS gene was also significantly different, with highest nirS diversity in sites invaded the longest. Interestingly, the denitrifier communities within the restored site were most similar to the ones in T. × glauca sites, suggesting a legacy effect. Our study suggests this invader can alter important ecosystem properties, such as native species richness, nutrient pools, and transformations, as well as bacterial community composition depending on time since invasion.  相似文献   

17.
Many efforts to restore disturbed landscapes seek to meet ecological goals over timescales from decades to centuries. It is thus crucial to know how different actions available to restoration practitioners may affect ecosystems in the long term, yet few such data exist. Here, we test the effects of seed and compost applications on plant community composition 9 years after their application, by taking advantage of a well‐controlled restoration experiment on a mountainside severely degraded by over 80 years of zinc smelting emissions. We asked whether plots have converged on similar plant communities regardless of initial seed and compost treatments, or if these initial treatments have given rise to lasting differences in whole plant communities or in the richness and abundance of native, exotic, and planted species. We found that compost types significantly affected plant communities 9 years later, but seed mix species composition did not. Observed differences in species richness and vegetative cover were negatively correlated, and both were related to the differences in plant communities associated with different compost types. These observed differences are due primarily to the number and abundance of species not in original seed mixes, of which notably many are native. Our results underscore the importance of soils in shaping the aboveground composition of ecosystems. Differences in soil characteristics can affect plant diversity and cover, which are both common restoration targets. Even in highly polluted and devegetated sites, compost and seed application can reinstate high vegetative cover and allow continued colonization of native species.  相似文献   

18.
Nontarget species such as pollinators may be of great importance to the restoration process and the long‐term functioning of restored habitats, but little is known about how such groups respond to habitat restoration. I surveyed bee communities at five equal‐aged restored sites, paired with five reference sites (riparian remnants) along the Sacramento River, California, United States. Flower availability and bee visitation patterns were also measured to examine the restoration of pollination function. Restoration of structural vegetation allowed diverse and abundant native bee communities to establish at the restoration sites; however, the composition of these important pollinator communities was distinct from that in the remnant riparian sites. Differences did not arise primarily from differences in the composition of the flowering‐plant community; rather there must be other physical characteristics of the restored sites or differences in nesting site availability that led to the different pollinator communities. Because sites were spatially paired, the differences are unlikely to be driven by landscape context. Bee life‐history and other biological traits may partially explain the differences between bee communities at restored and remnant sites. Patterns of visitation to native plant species suggest that pollination function is restored along with pollinator abundance and richness; however, function may be less robust in restored habitats. An examination of interaction networks between bees and plant species found at both restored and remnant riparian sites showed less redundancy of pollinators visiting some plants at restored habitats.  相似文献   

19.
封育是退化沙地植被恢复与生态重建的重要措施, 理解长期处于封育状态下不同类型沙地植物群落特征变化及其影响因素有利于沙地植被恢复和生态重建。该文基于对科尔沁沙地长期封育的流动沙丘(2005年封育)、固定沙丘(1985年封育)和沙质草地(1997年封育)连续多年(2005-2017年)的植物群落调查, 结合土壤种子库、土壤养分以及气象数据, 分析了植物群落特征变化及其对环境变化的响应。研究结果表明流动沙丘植被盖度显著增加, 群落生物量和物种多样性年际间波动变化, 但无明显趋势; 固定沙丘植物群落存在逆行演替趋势, 具体表现为群落生物量、灌木和半灌木以及豆科优势度显著下降, 而一年生和多年生杂类草优势度显著增加; 沙质草地群落物种丰富度和多年生禾草优势度存在降低趋势, 并且一年生杂类草优势度明显高于其他功能群, 群落存在退化现象。3类沙地土壤种子密度变化不显著, 而种子丰富度在流动沙丘显著增加, 在固定沙丘和沙质草地有下降趋势, 土壤养分仅有有效氮和有效磷含量增加。回归分析结果表明气温和降水是影响年内生物量积累的主要因素, 但对年际间群落生物量和物种丰富度变化影响不大。除趋势对应分析结果显示土壤种子库与植物群落之间存在很高的相似性, 典型相关分析结果表明沙质草地植物群落与土壤养分紧密相关, 而固定沙丘群落主要与土壤水分紧密相关。综合以上结果可知, 封育33年的固定沙丘群落和封育21年的沙质草地群落都存在退化现象, 而封育11年的流动沙丘群落正在缓慢恢复, 因此封育年限的设定对退化沙地植被恢复至关重要, 封育时间过长不仅不利于植物群落恢复, 反而会使群落发生逆行演替, 建议封育年限的设定应综合考虑植被退化程度、土壤养分状况、土壤种子库基础以及气候条件等因素的影响。  相似文献   

20.
To examine the relationship between plant species composition and microbial community diversity and structure, we carried out a molecular analysis of microbial community structure and diversity in two field experiments. In the first experiment, we examined bacterial community structure in bulk and rhizosphere soils in fields exposed to different plant diversity treatments, via a 16S rRNA gene clone library approach. Clear differences were observed between bacterial communities of the bulk soil and the rhizosphere, with the latter containing lower bacterial diversity. The second experiment focused on the influence of 12 different native grassland plant species on bacterial community size and structure in the rhizosphere, as well as the structure of Acidobacteria and Verrucomicrobia community structures. In general, bacterial and phylum-specific quantitative PCR and PCR-denaturing gradient gel electrophoresis revealed only weak influences of plant species on rhizosphere communities. Thus, although plants did exert an influence on microbial species composition and diversity, these interactions were not specific and selective enough to lead to major impacts of vegetation composition and plant species on below-ground microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号