首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blue light activates a specific protein kinase in higher plants   总被引:5,自引:2,他引:3       下载免费PDF全文
Blue light mediates the phosphorylation of a membrane protein in seedlings from several plant species. When crude microsomal membrane proteins from dark-grown pea (Pisum sativum L.), sunflower (Helianthus annuus L.), zucchini (Cucurbita pepo L.), Arabidopsis (Arabidopsis thaliana L.), or tomato (Lycopersicon esculentum L.) stem segments, or from maize (Zea mays L.), barley (Hordeum vulgare L.), oat (Avena sativa L.), wheat (Triticum aestivum L.), or sorghum (Sorghum bicolor L.) coleoptiles are illuminated and incubated in vitro with [γ-32P]ATP, a protein of apparent molecular mass from 114 to 130 kD is rapidly phosphorylated. Hence, this system is probably ubiquitous in higher plants. Solubilized maize membranes exposed to blue light and added to unirradiated solubilized maize membranes show a higher level of phosphorylation of the light-affected protein than irradiated membrane proteins alone, suggesting that an unirradiated substrate is phosphorylated by a light-activated kinase. This finding is further demonstrated with membrane proteins from two different species, where the phosphorylated proteins are of different sizes and, hence, unambiguously distinguishable on gel electrophoresis. When solubilized membrane proteins from one species are irradiated and added to unirradiated membrane proteins from another species, the unirradiated protein becomes phosphorylated. These experiments indicate that the irradiated fraction can store the light signal for subsequent phosphorylation in the dark. They also support the hypothesis that light activates a specific kinase and that the systems share a close functional homology among different higher plants.  相似文献   

2.
Dipankar Sen 《Phytochemistry》1975,14(7):1505-1506
For measurement of cytochrome c oxidase activity in intact plant mitochondria the optimum concentration of K-Pi buffer and pH in the reaction was found to be 75 mM and 7.4 respectively. The suitable concentration of K-Pi buffer for suspending and storing mitochondria, however, was found to be 20 mM or lower. These requirements applied equally well for mitochondria from wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), maize (Zea mays L.), and snap bean (Phaseolus vulgaris L.).  相似文献   

3.
Purified spinach (Spinacea oleracea L.) and barley (Hordeum vulgare L.) ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase supported 50 to 100% activation of substrate-bound Rubisco from spinach, barley, wheat (Triticum aestivum L.), soybean (Glycine max L.), pea (Pisum sativum L.), Arabidopsis thaliana, maize (Zea mays L.), and Chlamydomonas reinhardtii but supported only 10 to 35% activation of Rubisco from three Solanaceae species, tobacco (Nicotiana tabacum L.), petunia (Petunia hybrida L.), and tomato (Lycopersicon esculentum L.). Conversely, purified tobacco and petunia Rubisco activase catalyzed 75 to 100% activation of substrate-bound Rubisco from the three Solanacee species but only 10 to 25% activation of substrate-bound Rubisco from the other species. Thus, the interaction between substrate-bound Rubisco and Rubisco activase is species dependent. The species dependence observed is consistent with phylogenetic relationships previously derived from plant morphological characteristics and from nucleotide and amino acid sequence comparisons of the two Rubisco subunits. Species dependence in the Rubisco-Rubisco activase interaction and the absence of major anomalies in the deduced amino acid sequence of tobacco Rubisco activase compared to sequences in non-Solanaceae species suggest that Rubisco and Rubisco activase may have coevolved such that amino acid changes that have arisen by evolutionary divergence in one of these enzymes through spontaneous mutation or selection pressure have led to compensatory changes in the other enzyme.  相似文献   

4.
Corn (Zea mays, L.), bean (Phaseolus vulgaris L.), barley (Hordeum vulgare L.), spinach (Spinacia oleracea L.), and sugarbeet (Beta vulgaris L.) grown under iron deficiency, and Potamogeton pectinatus L, and Potamogeton nodosus Poir. grown under oxygen deficiency, contained less chlorophyll than the controls, but accumulated Mg-protoporphyrin IX and/or Mg-protoporphyrin IX monomethyl ester. No significant accumulation of these intermediates was detected in the controls or in the tissue of plants stressed by S, Mg, N deficiency, or by prolonged dark treatment. Treatment of normal plant tissue with δ-aminolevulinic acid in the dark resulted in the accumulation of protochlorophyllide. If this treatment was carried out under conditions of iron or oxygen deficiency, less protochlorophyllide was formed, but a significant amount of Mg-protoporphyrin IX and Mg-protoporphyrin IX monomethyl ester accumulated.  相似文献   

5.
4-Amino-5-hexynoic acid, a suicide inactivator of the mammalian pyridoxal phosphate-dependent 4-aminobutyric acid:2-oxoglutaric acid aminotransferase, inhibits phytochrome and chlorophyll synthesis in developing oat (Avena sativa L.), corn (Zea mays L.), pea (Pisum sativum L.), and cucumber (Cucumis sativus L.) seedlings. In Avena and Cucumis seedlings, respectively, inhibition of phytochrome and chlorophyll accumulation by 4-amino-5-hexynoic acid can be significantly reversed by application of 5-aminolevulinic acid. These results indicate that 4-amino-5-hexynoic acid inhibits the synthesis of 5-aminolevulinic acid in plants.  相似文献   

6.
Biosynthesis of jasmonic Acid by several plant species   总被引:36,自引:13,他引:23       下载免费PDF全文
Six plant species metabolized 18O-labeled 12-oxo-cis,cis-10,15-phytodienoic acid (12-oxo-PDA) to short chain cyclic fatty acids. The plant species were corn (Zea mays L.), eggplant (Solanum melongena L.), flax (Linum usitatissimum L.), oat (Avena sativa L.), sunflower (Helianthus annuus L.), and wheat (Triticum aestivum L.). Among the products was jasmonic acid, a natural plant constituent with growth-regulating properties. The pathway is the same as the one recently reported by us for jasmonic acid synthesis in Vicia faba L. pericarp. First, the ring double bond of 12-oxo-PDA is saturated; then β-oxidation enzymes remove six carbons from the carboxyl side chain of the ring. Substrate specificity studies indicated that neither the stereochemistry of the side chain at carbon 13 of 12-oxo-PDA nor the presence of the double bond at carbon 15 was crucial for either enzyme step. The presence of enzymes which convert 12-oxo-PDA to jasmonic acid in several plant species indicates that this may be a general metabolic pathway in plants.  相似文献   

7.
Sperk G  Tuppy H 《Plant physiology》1977,59(2):155-157
The mitochondrial membrane-bound ATPases of several plants were investigated. Two distinct types were encountered. The mitochondrial ATPases of castor bean (Ricinus communis var. Zanzibarensis, L.), cauliflower (Brassica oleracea, L.), and scarlet runner (Phaseolus coccineus, L.) were found to be inhibited by oligomycin, to have elevated molecular weights when separated from the organelles by ultrasonication and ammonium sulfate treatment and, subsequent to purification, to be cold-labile. On the other hand, mitochondria isolated from wheat (Triticum aestivum, L.), maize (Zea mays, L.), calla (Zantedeschia aethiopica, Spreng.), and onions (Allium cepa, L.) contain ATPases which, after ultrasonication of the organelles, were virtually insensitive to oligomycin and those molecular weights were as low as about 45,000; in the purified form they were resistant to storage in the cold. The plants whose mitochondria were of the first type, characterized by having ATPases similar to those of the mitochondria of animal tissues and bakers' yeast, belonged to the dicotyledons, whereas the mitochondria of the other type were found in monocotyledonous plants.  相似文献   

8.
Growth at increasing continuous irradiance (at high nutrient nitrate) and nutrient nitrate concentrations (at high continuous irradiance) furnished increases in the in vivo and in vitro nitrate reductase activities of corn (Zea mays L.), field peas (Pisum arvense L.), wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and globe amaranth (Gomphrena globosa L.) leaves and of marrow (Cucurbita pepo L.) cotyledons. Ratios of in vivo to in vitro activity declined exponentially in all species with increasing nitrate reductase levels promoted by nutrient nitrate. The ratios were more nearly independent of nitrate reductase levels generated by adjusting the irradiance; major exceptions were marrow and wheat at low (1.5 klux and less) irradiances and peas throughout the irradiance range, where decreases in the ratio were accompanied by increases in in situ nitrate concentration. The ratio also increased at the highest irradiance (39.2 klux) in wheat and barley, associated with a decline of in vitro nitrate reductase. These differences in response to irradiance and nutrient nitrate indicate that the in vivo assay does not provide a simple measure of nitrate reductase but rather yields a more composite measure of nitrate reduction, possibly related both to nitrate reductase level and to the supply of reductant for in vivo activity.  相似文献   

9.
Juvenile shore crabs Carcinus maenas (L.) were observed feeding on rock barnacles Semibalanus balanoides (L.) on a Bay of Fundy rocky shore. This previously unreported predatory behaviour was further investigated in the laboratory. When given a choice of three common and abundant gastropods, Nucella lapillus (L.), Littorina littorea (L.), and Littorina obtusata (L.), and the rock barnacle Semibalanus balanoides, juvenile shore crabs of both sexes ate mainly barnacles and consumed proportionately more barnacles than gastropods compared with adults, which ate mainly gastropods. The rock barnacle is an abundant and readily available food source which may be important in sustaining the juvenile crab through periods of moults and rapid growth. As the shore crab attains a certain age (size), it must forage lower on the shore as gastropods become more important in its diet.  相似文献   

10.
New nomenclatural combinations are proposed, necessitated mostly by the adoption of a narrower concept of the generic classificatory unit or, in some cases, by necessary changes of the taxonomic rank in several taxa. Explanatory comments on the taxonomic and nomenclatural problems are provided in the following genera:Aegonychon S. F. Gray (Lithospermum L. p.p.),Anemonastrum Holub andAnemonoides Mill. (Anemone L. p.p.),Bromopsis Fourr. (=Bromus L. p.p.),Calathiana Delarbre (Gentiana L. p.p.),Calcitrapoides Fabr. (Centaurea L. p.p.),Ciminalis Adans. (Gentiana L. p.p.),Pistolochia Bernh. (Corydalis Vent. p.p.),Psyllium Mill. (Plantago L. p.p.) andTephroseris (Reichenb.)Reichenb. (Senecio L. p.p.). In all 300 new combinations are proposed, including 17 inAnemonastrum, 32 inAnemonoides, 70 inBromopsis, 13 inCalathiana, 13 inCalcitrapoides, 29 inPistolochia, 40 inTephroseris and 25 inXanthoxalis.  相似文献   

11.

Background and aims

Catch crops used for mitigating nutrient losses to water can release phosphorus (P) when exposed to repeated freezing-thawing cycles (FTCs). This study sought to evaluate potential P losses from shoots and roots of eight catch crops.

Methods

Shoots and roots sampled from perennial ryegrass (Lolium perenne L.), cocksfoot (Dactylis glomerata L.), chicory (Cichorium intybus L.), phacelia (Phacelia tanacetifolia L.), red clover (Trifolium pratense L.), white mustard (Sinapis alba L.), oilseed radish (Raphanus sativus var. oleiformis L.) and white radish (R. sativus var. longipinnatus L.) were treated with no freezing, one single FTC, four continuous FTCs and four discontinuous FTCs. All samples were analysed for water-extractable P (WEP), and root samples also for characteristics such as specific root surface area (SSA).

Results

Freezing-thawing significantly increased potential P losses from both shoots and roots compared with no freezing. The two radish species and white mustard contained significantly higher concentrations of WEP than the other species, among which chicory and phacelia had the lowest WEP. On average, shoots had 43 % higher WEP than roots. Cumulative P release from shoots and roots was strongly correlated with their total-P content (p?=?0.006 and p?=?0.002, respectively). Cumulative release of P from taproots was correlated with SSA (p?=?0.03).

Conclusions

Chicory, and possibly phacelia, appear to be promising catch crops for P.  相似文献   

12.
Legumes play a crucial role in nitrogen supply to grass-legume mixtures for ruminant fodder. To quantify N transfer from legumes to neighbouring plants in multi-species grasslands we established a grass-legume-herb mixture on a loamy-sandy site in Denmark. White clover (Trifolium repens L.), red clover (Trifolium pratense L.) and lucerne (Medicago sativa L.) were leaf-labelled with 15N enriched urea during one growing season. N transfer to grasses (Lolium perenne L. and xfestulolium), white clover, red clover, lucerne, birdsfoot trefoil (Lotus corniculatus L.), chicory (Cichorium intybus L.), plantain (Plantago lanceolata L.), salad burnet (Sanguisorba minor L.) and caraway (Carum carvi L.) was assessed. Neighbouring plants contained greater amounts of N derived from white clover (4.8?g?m-2) compared with red clover (2.2?g?m-2) and lucerne (1.1?g?m-2). Grasses having fibrous roots received greater amounts of N from legumes than dicotyledonous plants which generally have taproots. Slurry application mainly increased N transfer from legumes to grasses. During the growing season the three legumes transferred approximately 40?kg?N ha-1 to neighbouring plants. Below-ground N transfer from legumes to neighbouring plants differed among nitrogen donors and nitrogen receivers and may depend on root characteristics and regrowth strategies of plant species in the multi-species grassland.  相似文献   

13.
In many regions of Iran, crops are irrigated with municipal and industrial wastewater that contain a variety of metals. The purpose of this study was to simulate the level of metals that may be presented to plants over a growing season in a controlled laboratory setting. Cadmium, lead, arsenic, chromium, mercury, nickel, copper, zinc, and selenium were applied to plants at the high rate of 200 g metal/ha/wk. The following plants were examined for metal accumulation and effects on yield: garden cress (Lipidium sativum), leek (Allium porrum L.), basil (Ocimum basilicum L.), mint (Mentha arvensis L.), onion (Allium capa L.), radish (Raphanus sativus L.), and tarragon (Artemisia draculus L.). All plants showed significant uptake of all metals when compared to control (p=0.05), and growth was significantly reduced (p=0.05). Cadmium and chromium levels of 85±7.4 and 47.6±8.9 μg/g); selenium levels were highest in tarragon (16.5±5.8 μg/g). Zinc levels were similar (p=0.05) in all species tested, as were mercury and lead. The remaining metals (nickel and copper) showed significant differences in uptake, depending on plant species.  相似文献   

14.
Dichloroacetamide safeners protect maize (Zea mays L.) against injury from chloroacetanilide and thiocarbamate herbicides. Etiolated maize seedlings have a high-affinity cytosolic-binding site for the safener [3H](R,S)-3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazol-idine ([3H]Saf), and this safener-binding activity (SafBA) is competitively inhibited by the herbicides. The safener-binding protein (SafBP), purified to homogeneity, has a relative molecular weight of 39,000, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and an isoelectric point of 5.5. Antiserum raised against purified SafBP specifically recognizes a 39-kD protein in etiolated maize and sorghum (Sorghum bicolor L.), which have SafBA, but not in etiolated wheat (Triticum aestivum L.), oat (Avena sativa L.), barley (Hordeum vulgare L.), tobacco (Nicotiana tabacum L.), or Arabidopsis, which lack SafBA. SafBP is most abundant in the coleoptile and scarcest in the leaves, consistent with the distribution of SafBA. SBP1, a cDNA encoding SafBP, was cloned using polymerase chain reaction primers based on purified proteolytic peptides. Extracts of Escherichia coli cells expressing SBP1 have strong [3H]Saf binding, which, like binding to the native maize protein, is competitively inhibited by the safener dichlormid and the herbicides S-ethyl dipropylthiocarbamate, alachlor, and metolachlor. SBP1 is predicted to encode a phenolic O-methyltransferase, but SafBP does not O-methylate catechol or caffeic acid. The acquisition of its encoding gene opens experimental approaches for the evaluation of the role of SafBP in response to the relevant safeners and herbicides.  相似文献   

15.
The ultrastructure of cells that form mesonephros tissues in eight species of bony fish of the Black Sea, Gaidropsarus mediterraneus (L.), Lisa aurata (Risso), Trachurus mediterraneus (Staindachner), Diplodus annularis (L.), Spicara flexuosa (Rafinesque), Gobius niger jozo L., Mullus barbatus ponticus (Essipov) and Scorpaena porcus (L.), was studied. It was shown that the ultrastructure of agranulocytes and rodlet cells in the studied species is similar to that of cells in freshwater bony fish. The differences were observed in the number of ionocyte mitochondria, in the vesicle ultrastructure in the cells with radial vesicle array, and in the ultrastructure of the specific secondary granules of neutrophils and eosinophils.  相似文献   

16.
Enzymes of the glyoxylate cycle in rhizobia and nodules of legumes   总被引:19,自引:9,他引:10       下载免费PDF全文
The relatively high level of fatty acids in soybean nodules and rhizobia from soybean nodules suggested that the glyoxylate cycle might have a role in nodule metabolism. Several species of rhizobia in pure culture were found to have malate synthetase activity when grown on a number of different carbon sources. Significant isocitrate lyase activity was induced when oleate, which presumably may act as an acetyl CoA precursor, was utilized as the principle carbon source. Malate synthetase was active in extracts of rhizobia from nodules of bush bean (Phaseolus vulgaris L.), cowpea (Vigna sinensis L.), lupine (Lupinus angustifolius L.) and soybean (Glycine max L. Merr.). Activity of malate synthetase was, however, barely detectable in rhizobia from alfalfa (Medicago sativa L.), red clover (Trifolium pratense L.) and pea (Pisum sativum L.) nodules. Appreciable isocitrate lyase activity was not detected in rhizobia from nodules nor was it induced by depletion of endogenous substrates by incubation of excised bush bean nodules. Although rhizobia has the potential for the formation of the key enzymes of the glyoxylate cycle, the absence of isocitrate lyase activity in bacteria isolated from nodules indicated that the glyoxylate cycle does not operate in the symbiotic growth of rhizobia and that the observed high content of fatty acids in nodules and nodule bacteria probably is related to a structural role.  相似文献   

17.
Results of investigation of the species composition and population density of the orthopteran assemblages, performed in the Hissar Valley in 1935 and 1989 are discussed. The increased anthropogenic press resulted in the drastic changes in the assemblages during 50 years. Two species dominating in the past, Calliptamus italicus (L.) and Dociostaurus maroccanus (Thunb.), are indicators of the integrity of original assemblages (and entire ecosystems of Hissar Valley, which are now completely destroyed) or of their insignificant transformation. The recent mesomorphic assemblages are dominated by Oxya fuscovittata (Marsch.), Duroniella gracilis Uv., Chorthippus biguttulus (L.), Aiolopus thalassinus (Fabr.), and xeromorphic communities, by Calliptamus barbarus (Costa), Dociostaurus tartarus (Stshelk.), Oedipoda miniata (Pall.), and Acrotylus insubricus (Scop.). The predominance and wide distribution of these species points to a significant transformation of ecosystems and destabilization of the environment in the Hissar Valley.  相似文献   

18.
19.
This paper describes a method for manipulating plant membrane fatty acid compositions without altering growth temperature or other conditions. Tween-fatty acid esters carrying specific fatty acids were synthesized and applied to various organs of plants growing axenically in glass jars. Treated plants incorporated large amounts of exogenous fatty acids into all acylated membrane lipids detected. Fatty acids were taken up by both roots and leaves. Fatty acids applied to roots were found in leaves, while fatty acids applied to leaves appeared in both leaves higher on the plant and in roots, indicating translocation (probably in the phloem). Foliar application was most effective; up to 20% of membrane fatty acids of leaves above the treated leaf and up to 40% of root membrane fatty acids were exogenously derived. Plants which took up exogenous fatty acids changed their patterns of fatty acid synthesis such that ratios of saturated to unsaturated fatty acids remained essentially unaltered. Fatty acid uptake was most extensively studied in soybean (Glycine max [L.] Merr.), but was also observed in other species, including maize (Zea mays L.), mung beans (Vigna radiata L.), peas (Pisum sativum L.), petunia (Petunia hybrida L.) and tomato (Lycopersicon esculentum Mill.). Potential applications of this system include studying internal transport of fatty acids, regulation of fatty acid and membrane synthesis, and influences of membrane fatty acid composition on plant physiology.  相似文献   

20.
Distribution of Protein-bound Hexosamine in Chloroplasts   总被引:2,自引:2,他引:0       下载免费PDF全文
Intact chloroplasts of spinach (Spinacia oleracea L.), sunflower (Helianthus annuus L.), and maize (Zea mays L.) mesophyll cells contained 0.33, 0.50, and 0.14% of bound hexosamine on a protein basis, respectively. Undifferentiated maize chloroplasts contained 0.19%. Values for chloroplast lamellae were, respectively, 0.16, 0.18, 0.12, and 0.06% and for envelope membranes they were 1.6, 2.5, 3.8, and 2.7%. Thus most of the hexosamine of chloroplasts is located in the envelope membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号