首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Comparisons were made for alpha-galactosidase production using red gram plant waste (RGPW) with wheat bran (WB) and other locally available substrates using the fungus Aspergillus oryzae under solid-state fermentation (SSF). RGPW proved to be potential substrate for alpha-galactosidase production as it gave higher enzyme titers (3.4 U/g) compared to WB (2.7 U/g) and other substrates tested. Mixing WB with RGPW (1:1, w/w) resulted enhanced alpha-galactosidase yield. The volume of moistening agent in the ratio of 1:2 (w/v), pH 5.5 and 1 ml (1 x 10(6) spores) of inoculum volume and four days incubation were optimum for alpha-galactosidase production. Increase in substrate concentration (RGPW+WB) did not decrease enzyme yield in trays.  相似文献   

2.
Response surface methodology (RSM) was used to evaluate the effects of fermentation parameters for cellulase production by Trichoderma reesei QM9414 and T. reesei MCG77 in solid-state fermentation using rice bran as substrate. Initial pH, moisture content and temperature were optimized using filter paper activity (FPA) as response. Statistical analysis of the results for T. reesei QM9414 showed that only moisture content had significant effect on cellulase activity and had a linear effect on enzyme activity (maximum enzyme activities were obtained at 70% moisture content). The results for T. reesei MCG77 showed that temperature and moisture content were the most significant parameters for cellulase activity. The optimum cellulase production was in the temperature range of 25-30 degrees C and moisture content between 55% and 70%. After the optimization, the FPA in T. reesei MCG77 was increased by 2.5 folds compared to that of T. reesei QM9414.  相似文献   

3.
The glucoamylase-encoding gene (glaB) promoter should be very useful for recombinant protein production in solid-state fermentation (SSF) of Aspergillus oryzae. A 97-bp fragment containing the cis-element of the glaB promoter was inserted into the glaA promoter, which was little expressed in SSF. The chimeric promoter showed about a 24-fold increase in promoter activity in SSF. Eight copies of the 97-bp fragment were tandemly fused with the glaB promoter. The improved promoter showed about a 4.6-fold increase in promoter activity in SSF. The glaB gene was overexpressed under control of the improved glaB promoter in SSF. Recombinant glucoamylase production reached about 1524 mg/kg-broth for 2 d. The improved glaB promoter should be very useful for overproduction of a recombinant protein in SSF of A. oryzae.  相似文献   

4.
This study aimed to obtain strains with high glyphosate-degrading ability and improve the ability of glyphosate degradation enzyme by the optimization of fermentation conditions. Spore from Aspergillus oryzae A-F02 was subjected to ultraviolet mutagenesis. Single-factor experiment and response surface methodology were used to optimize glyphosate degradation enzyme production from mutant strain by liquid-state fermentation. Four mutant strains were obtained and named as FUJX 001, FUJX 002, FUJX 003, and FUJX 004, in which FUJX 001 gave the highest total enzyme activity. Starch concentration at 0.56%, GP concentration at 1,370?mg/l, initial pH at 6.8, and temperature at 30°C were the optimum conditions for the improved glyphosate degradation endoenzyme production of A. oryzae FUJX 001. Under these conditions, the experimental endoenzyme activity was 784.15?U/100?ml fermentation liquor. The result (784.15?U/100?ml fermentation liquor) was approximately 14-fold higher than that of the original strain. The result highlights the potential of glyphosate degradation enzyme to degrade glyphosate.  相似文献   

5.
Aspergillus oryzae MTCC 5341, when grown on wheat bran as substrate, produces several extracellular acid proteases. Production of the major acid protease (constituting 34% of the total) by solid-state fermentation is optimized. Optimum operating conditions obtained are determined as pH 5, temperature of incubation of 30°C, defatted soy flour addition of 4%, and fermentation time of 120 h, resulting in acid protease production of 8.64 × 105 U/g bran. Response-surface methodology is used to generate a predictive model of the combined effects of independent variables such as, pH, temperature, defatted soy flour addition, and fermentation time. The statistical design indicates that all four independent variables have significant effects on acid protease production. Optimum factor levels are pH 5.4, incubation temperature of 31°C, 4.4% defatted soy flour addition, and fermentation time of 123 h to yield a maximum activity of 8.93 × 105 U/g bran. Evaluation experiments, carried out to verify the predictions, reveal that A. oryzae produces 8.47 × 105 U/g bran, which corresponds to 94.8% of the predicted value. This is the highest acid protease activity reported so far, wherein the fungus produces four times higher activity than previously reported [J Bacteriol 130(1): 48–56, 1977].  相似文献   

6.
7.
8.
9.
10.
AIMS: To optimize the media components for xylanase production by Aspergillus versicolor MKU3 in solid-state fermentation (SSF). METHODS AND RESULTS: Medium optimization was carried out using De Moe's fractional factorial design with seven components. Maximum production of xylanase 3249.9 U g(-1) was obtained in SSF with an optimized medium containing (g l(-1)): NaNO(3), 20; K(2)HPO(4), 20; MgSO(4), 10; FeSO(4), 0.001; KCl, 1; peptone, 10 and yeast extract, 10. Four components namely NaNO(3), MgSO(4), peptone and K(2)HPO(4) significantly increased the xylanase production by A. versicolor MKU3. CONCLUSIONS: Fractional factorial design was used to optimize the seven components in the fermentation medium for SSF. The optimized media increased xylanase production by 3.4-fold. SIGNIFICANCE AND IMPACT OF THE STUDY: Aspergillus versicolor MKU3 produced maximum xylanase after two steps of media optimization under alkaline condition. This medium will be significant value for xylanase production in SSF.  相似文献   

11.
Fourteen Penicillium strains have been screened on wheat bran–crude chitin mixture medium for extracellular chitinase production in solid-state fermentation. Under the experimental conditions tested, Penicillium aculeatum NRRL 2129 (=ATCC 10409) was selected as the best enzyme producer. The optimum incubation period for chitinase production by the potent organism was found to be 72 h. Chromatofocusing was performed as the first step in the purification scheme, but high amount of contaminating proteins interfered with the method. Hence, ion-exchange chromatography experiments were carried out followed by gel filtration to separate and isolate chitinase isoenzymes. Four major chitinase peaks of molecular weight 82.7, 44.6, 28.2 and 26.9 kDa were observed after gel filtration chromatography while, on SDS-PAGE, three protein bands of molecular weights 82.6, 33.9 and 29.1 kDa were identified. The purified enzyme showed optimal temperature and pH at 50 and 5.5 °C, respectively.  相似文献   

12.
Summary Colony radial growth rates of Rhizopus oligosporus and Aspergillus oryzae were compared under various conditions on agar plates containing cassava starch. Both organisms grew well on cassava starch as their sole source of carbon and energy, although growth was stimulated by the addition of yeast extract and peptone. Neither organism utilized ungelatinized starch effectively. The optimum initial pH for R. oligosporus was 7, although good growth was obtained at pH 5 when ammonium sulfate was partially replaced by urea. A. oryzae grew well over a range of initial pH values from 5 to 8. Growth of R. oligosporus was inhibited by NaCl concentrations above 0.5% (w/v) while A. oryzae was unaffected up to 4% NaCl. The best colony radial growth rate obtained for R. oligosporus was 1.01 mm/h, which was far superior to that obtained for A. oryzae (0.29 mm/h). R. oligosporus was chosen as the more suitable organism for future studies of the protein enrichment of cassava by solid-state fermentation.  相似文献   

13.
Sugarcane bagasse (SCB), a lignocellulosic byproduct of juice extraction from sugarcane, is rich in cellulose (40-42%). This could beused as a substrate for the production of cellulase complex. Fermentation conditions were optimized for production of cellulasecomplex (CMCase, Cellulobiase and FPase) by wild type Trichoderma sp. using sugarcane bagasse as sole carbon source. Alkalinetreatment (2% NaOH) of bagasse (AlSCB) was found suitable for the production of reducing sugar over the acidic pretreatmentmethod. After 5 days of incubation period, 5% substrate concentration at pH 5.0 and 400C resulted in maximum production ofCMCase (0.622 U), while maximum (3.388 U) production of cellulobiase was obtained at 300C. The CMCase was precipitated andpurified to the extent of 59.06 fold by affinity chromatography with 49.09% recovery. On 12% SDS-PAGE, a single bandcorresponding to 33 kDa was observed. The Km and Vmax for CMCase from Trichoderma was found 507.04 mg/ml and 65.32mM/min, respectively. The enzyme exhibited maximum activity at 300C at pH-5.0 (0.363 U) and was stable over range of 20-60°Cand pH 5.0-7.5.  相似文献   

14.
15.
Three Aspergillus nigerstrains were grown in submerged and solid state fermentation systems with sucrose at 100 g l–1. Average measurements of all strains, liquid vs solid were: final biomass (g l–1), 11 ± 0.3 vs 34 ± 5; maximal enzyme titres (U l–1) 1180 ± 138 vs 3663 ± 732; enzyme productivity (U l–1h–1) 20 ± 2 vs 87 ± 33 and enzyme yields (U/gX) 128 ± 24 vs 138 ± 72. Hence, better productivity in solid-state was due to a better mould growth.  相似文献   

16.
利用Plackett-Burman设计法(Plackett-Burman,PB),对影响根霉TP-02液态发酵产纤维素酶的8个因子进行了筛选,结果表明,影响该菌发酵产纤维素酶的主要因子为麸皮与稻草的比例、槐糖、Tween 80。利用最陡爬坡试验逼近最大响应区域,在此基础上,采用响应面法(ResponseSurface Methodology,RSM)对这3个因子的影响进行研究,得出纤维素酶产量的数学模型,通过对二次多项回归方程求解,得到3个因子的最优用量:麸皮稻草比例为:3.7:1,槐糖量为:0.62%,Tween 80为0.68 g/L,在优化后的条件下培养96 h,纤维素酶滤纸酶活可达到8.13 IU/mL比优化前提高了38.97%。  相似文献   

17.
Summary A number of culture conditions for protease production by Aspergillus oryzae NRRL 2160 on solid substrates were investigated. The pH of the medium and the substrate markedly affected protease production. High protease yield was obtained when the fungus was cultivated for 72–96 h on rice hulls: rice bran (7:3), at an initial pH of 7.0. Maximal protease production was achieved at an initial moisture content of 35–40%, corresponding to a water activity range of 0.982–0.986. Casein and gluten were effective inducers. Polyethylene bags proved to be promising containment systems for solid state cultivation.Offprint requests to: A. M. R. Pilosof  相似文献   

18.
Oxygen transfer in the fungal mat is a major concern in solid-state fermentation (SSF). Oxygen supply into the mycelial layers is hampered by diffusion limitation. For aerobic fungi, like Aspergillus oryzae, this oxygen depletion can be a severely limiting factor for growth and metabolite production. This paper describes the effects of a low oxygen concentration on growth at the levels of individual hyphae, colonies and overcultures, and on alpha-amylase production in overcultures. PDA medium was used to study the effect of a low oxygen concentration on hyphal elongation rate and branching frequency of hyphae, and radial extension rate of colonies of A. oryzae. We found similar saturation constants (K(O2)) of 0.1% (v/v in the gas phase) for oxygen concentration described with Monod kinetics, for branching frequency of hyphae and colony extension rate. When A. oryzae was grown as an over-culture on wheat-flour model substrate at 0.25% (v/v) oxygen concentration, the reduction in growth was more pronounced than as individual hyphae and a colony on PDA medium. Experimental results also showed that the specific alpha-amylase production rate under the condition of 0.25% (v/v) oxygen was reduced. Because the value of K(O2) is relatively low, it is reasonable to simplify the kinetics of growth of A. oryzae to zero-order kinetics in coupled diffusion/reaction models.  相似文献   

19.
Seven fungi were tested for production of mannanases. The highest mannanase activities were produced by Aspergillus oryzae NRRL 3488 after 7 days in static cultures. Mannanases were induced by gum locust bean (1.0%). The highest mannanase activity was produced when a mixture of peptone, urea and ammonium sulphate was used as nitrogen source. Zn2+ or Co2+ favoured enzyme production. The immobilized cells on Ca-alginate and agar were able to produce beta-mannanase for four runs with a slight decrease in the activity. The optimum temperature for enzyme reaction was 50-55 degrees C at pH 6.0. In the absence of substrate the enzyme was thermostable retaining 75% activity for 1 h at 50 degrees C, and 68% activity for 1 h at 60 degrees C.  相似文献   

20.
Malic acid, a petroleum-derived C4-dicarboxylic acid that is used in the food and beverage industries, is also produced by a number of microorganisms that follow a variety of metabolic routes. Several members of the genus Aspergillus utilize a two-step cytosolic pathway from pyruvate to malate known as the reductive tricarboxylic acid (rTCA) pathway. This simple and efficient pathway has a maximum theoretical yield of 2 mol malate/mol glucose when the starting pyruvate originates from glycolysis. Production of malic acid by Aspergillus oryzae NRRL 3488 was first improved by overexpression of a native C4-dicarboxylate transporter, leading to a greater than twofold increase in the rate of malate production. Overexpression of the native cytosolic alleles of pyruvate carboxylase and malate dehydrogenase, comprising the rTCA pathway, in conjunction with the transporter resulted in an additional 27 % increase in malate production rate. A strain overexpressing all three genes achieved a malate titer of 154 g/L in 164 h, corresponding to a production rate of 0.94 g/L/h, with an associated yield on glucose of 1.38 mol/mol (69 % of the theoretical maximum). This rate of malate production is the highest reported for any microbial system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号