首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular senescence is an irreversible proliferation arrest, thought to contribute to tumor suppression, proper wound healing and, perhaps, tissue and organismal aging. Two classical tumor suppressors, p53 and pRB, control cell cycle arrest associated with senescence. Profound molecular changes occur in cells undergoing senescence. At the level of chromatin, for example, senescence associated heterochromatic foci (SAHF) form in some cell types. Chromatin is inherently dynamic and likely needs to be actively maintained to achieve a stable cell phenotype. In proliferating cells chromatin is maintained in conjunction with DNA replication, but how non-proliferating cells maintain chromatin structure is poorly understood. Some histone variants, such as H3.3 and macroH2A increase as cells undergo senescence, suggesting histone variants and their associated chaperones could be important in chromatin structure maintenance in senescent cells. Here, we discuss options available for senescent cells to maintain chromatin structure and the relative contribution of histone variants and chaperones in this process. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.  相似文献   

2.
Loss of linker histone H1 in cellular senescence   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

3.
4.
染色质重塑是调控基因时序性表达的重要环节.衰老的人二倍体成纤维细胞核中有呈点状聚集的异染色质结构,这种特征性现象被称为衰老相关异染色质聚集(SAHF).K9M-H3和HP1是SAHF的标志性蛋白.在SAHF的形成过程中,p16INK4a/Rb途径和高迁移率蛋白A(high-mobility group A protein,HMGA protein)等许多因素起着非常重要的作用.最近研究表明,SAHF能够抑制E2F靶基因的表达,从而使细胞维持于稳定的衰老状态.SAHF的发现为细胞衰老的研究提供了一个新的生物学标志,并为细胞衰老状态的稳定维持提出了一种分子机制.  相似文献   

5.

Background

Cellular senescence is a permanent growth arrest that occurs in response to cellular stressors, such as telomere shortening or activation of oncogenes. Although the process of senescence growth arrest is somewhat conserved between mouse and human cells, there are some critical differences in the molecular pathways of senescence between these two species. Recent studies in human fibroblasts have defined a cell signaling pathway that is initiated by repression of a specific Wnt ligand, Wnt2. This, in turn, activates a histone chaperone HIRA, and culminates in formation of specialized punctate domains of facultative heterochromatin, called Senescence-Associated Heterochromatin Foci (SAHF), that are enriched in the histone variant, macroH2A. SAHF are thought to repress expression of proliferation-promoting genes, thereby contributing to senescence-associated proliferation arrest. We asked whether this Wnt2-HIRA-SAHF pathway is conserved in mouse fibroblasts.

Results

We show that mouse embryo fibroblasts (MEFs) and mouse skin fibroblasts, do not form robust punctate SAHF in response to an activated Ras oncogene or shortened telomeres. However, senescent MEFs do exhibit elevated levels of macroH2A staining throughout the nucleus as a whole. Consistent with their failure to fully activate the SAHF assembly pathway, the Wnt2-HIRA signaling axis is not overtly regulated between proliferating and senescent mouse cells.

Conclusions

In addition to the previously defined differences between mouse and human cells in the mechanisms and phenotypes associated with senescence, we conclude that senescent mouse and human fibroblasts also differ at the level of chromatin and the signaling pathways used to regulate chromatin. These differences between human and mouse senescence may contribute to the increased propensity of mouse fibroblasts (and perhaps other mouse cell types) to become immortalized and transformed, compared to human cells.  相似文献   

6.
Senescence is characterized by an irreversible cell proliferation arrest. Specialized domains of facultative heterochromatin, called senescence-associated heterochromatin foci (SAHF), are thought to contribute to the irreversible cell cycle exit in many senescent cells by repressing the expression of proliferation-promoting genes such as cyclin A. SAHF contain known heterochromatin-forming proteins, such as heterochromatin protein 1 (HP1) and the histone H2A variant macroH2A, and other specialized chromatin proteins, such as HMGA proteins. Previously, we showed that a complex of histone chaperones, histone repressor A (HIRA) and antisilencing function 1a (ASF1a), plays a key role in the formation of SAHF. Here we have further dissected the series of events that contribute to SAHF formation. We show that each chromosome condenses into a single SAHF focus. Chromosome condensation depends on the ability of ASF1a to physically interact with its deposition substrate, histone H3, in addition to its cochaperone, HIRA. In cells entering senescence, HP1gamma, but not the related proteins HP1alpha and HP1beta, becomes phosphorylated on serine 93. This phosphorylation is required for efficient incorporation of HP1gamma into SAHF. Remarkably, however, a dramatic reduction in the amount of chromatin-bound HP1 proteins does not detectably affect chromosome condensation into SAHF. Moreover, abundant HP1 proteins are not required for the accumulation in SAHF of histone H3 methylated on lysine 9, the recruitment of macroH2A proteins, nor other hallmarks of senescence, such as the expression of senescence-associated beta-galactosidase activity and senescence-associated cell cycle exit. Based on our results, we propose a stepwise model for the formation of SAHF.  相似文献   

7.
Cellular senescence is an irreversible proliferation arrest of primary cells and an important tumor suppression process. Senescence is often characterized by domains of facultative heterochromatin, called senescence-associated heterochromatin foci (SAHF), which repress expression of proliferation-promoting genes. Formation of SAHF is driven by a complex of histone chaperones, HIRA and ASF1a, and depends upon prior localization of HIRA to PML nuclear bodies. However, how the SAHF assembly pathway is activated in senescent cells is not known. Here we show that expression of the canonical Wnt2 ligand and downstream canonical Wnt signals are repressed in senescent human cells. Repression of Wnt2 occurs early in senescence and independently of the pRB and p53 tumor suppressor proteins and drives relocalization of HIRA to PML bodies, formation of SAHF and senescence, likely through GSK3beta-mediated phosphorylation of HIRA. These results have major implications for our understanding of both Wnt signaling and senescence in tissue homeostasis and cancer progression.  相似文献   

8.
Our goal is to understand the impact of chromatin structure on cell proliferation, cell and tissue aging, cancer and cancer therapies. To this end, we have investigated the formation of specialized domains of facultative heterochromatin, called Senescence Associated Heterochromatin Foci (SAHF), in senescent human cells. A complex of histone chaperones, HIRA and ASF1a, drives formation of SAHF. Remarkably, although SAHF are highly compacted domains of heterochromatin, these domains of facultative heterochromatin largely exclude other domains of chromatin at telomeres and pericentromeres, which are themselves thought to be constitutively heterochromatic. The relationship between SAHF formation and these other domains of heterochromatin is discussed. Also, in the course of our studies, we have obtained evidence that points to a novel function for the widely-studied but poorly-understood family of heterochromatin proteins, HP1 proteins. We propose that HP1 proteins are essential components of a dynamic nuclear response that senses and rectifies defects in epigenetic information, encoded in chromatin through histone modifications and DNA methylation. We further propose that defects in this essential "chromatin repair" response in transformed human cells contributes to the preferential killing of cancer cells by the epigenetic cancer therapies that are currently in clinical development.  相似文献   

9.
Cellular senescence and chromatin structure   总被引:1,自引:0,他引:1  
Funayama R  Ishikawa F 《Chromosoma》2007,116(5):431-440
Cellular senescence is characterized by stable cell cycle arrest that is triggered by various forms of stress stimuli. Senescent cells show a series of morphological and physiological alterations including a flat and enlarged morphology, an increase in acidic β-galactosidase activity, chromatin condensation, and changes in gene expression pattern. These features are not observed in proliferating cells or quiescent cells in vitro. Using these senescence markers, cellular senescence has been shown to occur in benign or premalignant lesions but not in malignant lesions and to act as a tumor-suppressing mechanism in vivo. The onset and maintenance of the senescent state are regulated by two tumor suppressor proteins, p53 and Rb, which mediate senescence signals through p38 mitogen-activated protein kinase and cyclin-dependent kinase inhibitors. Alterations of chromatin structure are believed to contribute to the irreversible nature of the senescent state. Senescent cells form characteristic heterochromatin structure called senescence-associated heterochromatic foci (SAHFs), which may repress the expression of proliferation-promoting genes, such as E2F target genes. Recent studies have provided molecular insights into the structure and the mechanism of SAHF formation. In this paper, we review the role of cellular senescence in tumor suppression in vivo and the molecular mechanism of stable growth arrest in senescent cells, focusing on the special form of heterochromatin, SAHFs.  相似文献   

10.
Cellular senescence, an irreversible proliferation arrest evoked by stresses such as oncogene activation, telomere dysfunction, or diverse genotoxic insults, has been implicated in tumor suppression and aging. Primary human fibroblasts undergoing oncogene-induced or replicative senescence are known to form senescence-associated heterochromatin foci (SAHF), nuclear DNA domains stained densely by DAPI and enriched for histone modifications including lysine9-trimethylated histone H3. While cellular senescence occurs also in premalignant human lesions, it is unclear how universal is SAHF formation among various cell types, under diverse stresses, and whether SAHF occur in vivo. Here, we report that human primary fibroblasts (BJ and MRC-5) and primary keratinocytes undergoing replicative senescence, or premature senescence induced by oncogenic H-Ras, diverse chemotherapeutics and bacterial cytolethal distending toxin, show differential capacity to form SAHF. Whereas all tested cell types formed SAHF in response to activated H-Ras, only MRC-5, but not BJ fibroblasts or keratinocytes, formed SAHF under senescence induced by etoposide, doxorubicin, hydroxyurea, bacterial intoxication or telomere attrition. In addition, DAPI-defined SAHF were detected on paraffin sections of Ras-transformed cultured fibroblasts, but not human lesions at various stages of tumorigenesis. Overall, our results indicate that unlike the widely present DNA damage response marker γH2AX, SAHF is not a common feature of cellular senescence. Whereas SAHF formation is shared by diverse cultured cell types under oncogenic stress, SAHF are cell-type-restricted under genotoxin-induced and replicative senescence. Furthermore, while the DNA/DAPI-defined SAHF formation in cultured cells parallels enhanced expression of p16ink4a, such ‘prototypic’ SAHF are not observed in tissues, including premalignant lesions, irrespective of enhanced p16ink4a and other features of cellular senescence.  相似文献   

11.
12.

Background

Cells that reach “Hayflick limit” of proliferation, known as senescent cells, possess a particular type of nuclear architecture. Human senescent cells are characterized by the presence of highly condensed senescent associated heterochromatin foci (SAHF) that can be detected both by immunostaining for histone H3 three-methylated at lysine 9 (H3K9me3) and by DAPI counterstaining.

Methods

We have studied nuclear architecture in bovine senescent cells using a combination of immunofluorescence and 3D fluorescent in-situ hybridization (FISH).

Results

Analysis of heterochromatin distribution in bovine senescent cells using fluorescent in situ hybridization for pericentric chromosomal regions, immunostaining of H3K9me3, centromeric proteins CENP A/B and DNA methylation showed a lower level of heterochromatin condensation as compared to young cells. No SAHF foci were observed. Instead, we observed fibrous ring-like or ribbon-like heterochromatin patterns that were undetectable with DAPI counterstaining. These heterochromatin fibers were associated with nucleoli.

Conclusions

Constitutive heterochromatin in bovine senescent cells is organized in ring-like structures.  相似文献   

13.
The retinoblastoma (RB)/p16(INK4a) pathway regulates senescence of human melanocytes in culture and oncogene-induced senescence of melanocytic nevi in vivo. This senescence response is likely due to chromatin modifications because RB complexes from senescent melanocytes contain increased levels of histone deacetylase (HDAC) activity and tethered HDAC1. Here we show that HDAC1 is prominently detected in p16(INK4a)-positive, senescent intradermal melanocytic nevi but not in proliferating, recurrent nevus cells that localize to the epidermal/dermal junction. To assess the role of HDAC1 in the senescence of melanocytes and nevi, we used tetracycline-based inducible expression systems in cultured melanocytic cells. We found that HDAC1 drives a sequential and cooperative activity of chromatin remodeling effectors, including transient recruitment of Brahma (Brm1) into RB/HDAC1 mega-complexes, formation of heterochromatin protein 1 beta (HP1 beta)/SUV39H1 foci, methylation of H3-K9, stable association of RB with chromatin and significant global heterochromatinization. These chromatin changes coincide with expression of typical markers of senescence, including the senescent-associated beta-galactosidase marker. Notably, formation of RB/HP1 beta foci and early tethering of RB to chromatin depends on intact Brm1 ATPase activity. As cells reached senescence, ejection of Brm1 from chromatin coincided with its dissociation from HP1 beta/RB and relocalization to protein complexes of lower molecular weight. These results provide new insights into the role of the RB pathway in regulating cellular senescence and implicate HDAC1 as a likely mediator of early chromatin remodeling events.  相似文献   

14.
Two major mechanisms have been causally implicated in the establishment of cellular senescence: the activation of the DNA damage response (DDR) pathway and the formation of senescence-associated heterochromatic foci (SAHF). Here we show that in human fibroblasts resistant to premature p16(INK4a) induction, SAHF are preferentially formed following oncogene activation but are not detected during replicative cellular senescence or on exposure to a variety of senescence-inducing stimuli. Oncogene-induced SAHF formation depends on DNA replication and ATR (ataxia telangiectasia and Rad3-related). Inactivation of ATM (ataxia telangiectasia mutated) or p53 allows the proliferation of oncogene-expressing cells that retain increased heterochromatin induction. In human cancers, levels of heterochromatin markers are higher than in normal tissues, and are independent of the proliferative index or stage of the tumours. Pharmacological and genetic perturbation of heterochromatin in oncogene-expressing cells increase DDR signalling and lead to apoptosis. In vivo, a histone deacetylase inhibitor (HDACi) causes heterochromatin relaxation, increased DDR, apoptosis and tumour regression. These results indicate that heterochromatin induced by oncogenic stress restrains DDR and suggest that the use of chromatin-modifying drugs in cancer therapies may benefit from the study of chromatin and DDR status of tumours.  相似文献   

15.
16.
Cellular senescence is an irreversible form of cell cycle arrest that provides a barrier to neoplastic transformation.The integrity of the Rb (Retinoblastoma) pathway is necessary for the formation of ...  相似文献   

17.
18.
Narita M  Nũnez S  Heard E  Narita M  Lin AW  Hearn SA  Spector DL  Hannon GJ  Lowe SW 《Cell》2003,113(6):703-716
Cellular senescence is an extremely stable form of cell cycle arrest that limits the proliferation of damaged cells and may act as a natural barrier to cancer progression. In this study, we describe a distinct heterochromatic structure that accumulates in senescent human fibroblasts, which we designated senescence-associated heterochromatic foci (SAHF). SAHF formation coincides with the recruitment of heterochromatin proteins and the retinoblastoma (Rb) tumor suppressor to E2F-responsive promoters and is associated with the stable repression of E2F target genes. Notably, both SAHF formation and the silencing of E2F target genes depend on the integrity of the Rb pathway and do not occur in reversibly arrested cells. These results provide a molecular explanation for the stability of the senescent state, as well as new insights into the action of Rb as a tumor suppressor.  相似文献   

19.
Adams PD 《Gene》2007,397(1-2):84-93
Cellular senescence is an important tumor suppression process, and a possible contributor to tissue aging. Senescence is accompanied by extensive changes in chromatin structure. In particular, many senescent cells accumulate specialized domains of facultative heterochromatin, called Senescence-Associated Heterochromatin Foci (SAHF), which are thought to repress expression of proliferation-promoting genes, thereby contributing to senescence-associated proliferation arrest. This article reviews our current understanding of the structure, assembly and function of these SAHF at a cellular level. The possible contribution of SAHF to tumor suppression and tissue aging is also critically discussed.  相似文献   

20.
The major hallmark of cellular senescence is an irreversible cell cycle arrest and thus it is a potent tumor suppressor mechanism. Genotoxic insults, e.g. oxidative stress, are important inducers of the senescent phenotype which is characterized by an accumulation of senescence-associated heterochromatic foci (SAHF) and DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS). Interestingly, senescent cells secrete pro-inflammatory factors and thus the condition has been called the senescence-associated secretory phenotype (SASP). Emerging data has revealed that NF-κB signaling is the major signaling pathway which stimulates the appearance of SASP. It is known that DNA damage provokes NF-κB signaling via a variety of signaling complexes containing NEMO protein, an NF-κB essential modifier, as well as via the activation of signaling pathways of p38MAPK and RIG-1, retinoic acid inducible gene-1. Genomic instability evoked by cellular stress triggers epigenetic changes, e.g. release of HMGB1 proteins which are also potent enhancers of inflammatory responses. Moreover, environmental stress and chronic inflammation can stimulate p38MAPK and ceramide signaling and induce cellular senescence with pro-inflammatory responses. On the other hand, two cyclin-dependent kinase inhibitors, p16INK4a and p14ARF, are effective inhibitors of NF-κB signaling. We will review in detail the signaling pathways which activate NF-κB signaling and trigger SASP in senescent cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号