首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyze a Markov model of a two-stage production system capable of producing two part types. Each stage consists of an unreliable machine and the different stages are decoupled by two intermediate buffers of finite capacity, one for each part type. Unlike previous work, we specifically consider non-negligible machine setup times during changeovers and also assume that machine failure probabilities are dependent on the part type being produced. We assume that machine processing times, repair/failure times and setup times are exponentially distributed and may have different mean rates for each machine and for each part-type. We describe a solution method to evaluate the system performance that reduces the total number of equations to be solved from a multiplicative function to an additive function of buffer sizes. This model may then be integrated with a new decomposition method for analyzing longer lines. The results show the relative influence of different factors on system performance and thus provide guidance to the optimal choice of system parameters such as buffer sizes.  相似文献   

2.
We present an analytical model for performance prediction of flexible manufacturing systems (FMSs) with a single discrete material-handling device (MHD). This configuration of FMS is significant for many reasons: it is commonly found in industry, it simplifies material-handling control, it is amenable to analytical modeling, and it forms a building block for more complex systems. Standard queueing models are inadequate to analyze this configuration because of the need to take into consideration many nontrivial issues such as state-dependent routing, interference from the MHD, and the analysis of the MHD. To account for state-dependent routing, we develop an iterative method that is built around mean value analysis. To analyze the MHD interference, we use two queueing network models. In the first, we ignore queueing at the MHD but model the interference from the MHD by inflating the station service times. The second network models the queueing for the MHD and estimates the blocking (inflation) times needed for the first model. By iterating between the two networks, we are able to predict the performance of this configuration of FMS. Our analytical estimates are validated against discrete event simulation and shown to be quite accurate for initial system design.  相似文献   

3.
Flexibility in part process representation and in highly adaptive routing algorithms are two major sources for improvement in the control of flexible manufacturing systems (FMSs). This article reports the investigation of the impact of these two kinds of flexibilities on the performance of the system. We argue that, when feasible, the choices of operations and sequencing of the part process plans should be deferred until detailed knowledge about the real-time factory state is available. To test our ideas, a flexible routing control simulation system (FRCS) was constructed and a programming language for modeling FMS part process plans, control strategies, and environments of the FMS was designed and implemented. In addition, a scheme for implementing flexible process routing called data flow dispatching rule (DFDR) was derived. The simulation results indicate that flexible processing can reduce mean flow time while increasing system throughput and machine utilization. We observed that this form of flexibility makes automatic load balancing of the machines possible. On the other hand, it also makes the control and scheduling process more complicated and calls for new control algorithms.  相似文献   

4.
The increased use of flexible manufacturing systems to efficiently provide customers with diversified products has created a significant set of operational challenges for managers. Many issues concerning procedures and policies for the day-to-day operation of these systems still are unresolved. Previous studies in this area have concentrated on various problems by isolating or simplifying the systems under study. The primary objective of this study is to extend previous research by examining the effects of scheduling rules and routing flexibility on the performance of a constrained, random flexible manufacturing system (FMS). Other experimental factors considered are shop load, shop configuration, and system breakdowns. Within the bounds of this experiment, the results indicate that, in the presence of total routing flexibility, the effects of shop load, system breakdowns, and scheduling rules are significantly dampened. In particular, when total routing flexibility exists, the choice of scheduling rules is not critical. We also show that the behavior of scheduling rules in a more constrained FMS environment (i.e., where system breakdowns occur and material handling capability is limited) is consistent with the findings of previous research conducted under less constrained environments. Finally, results indicate that the shop configuration factor has little or no impact on a system's flow-time performance.  相似文献   

5.
This article evaluates the performance of flexible manufacturing systems with finite local buffers and fixed or dynamic routing rules, and addresses the optimal design or system configuration problem of maximizing the system throughput. The costs include machine cost, part (or pallet) cost, and local buffers cost. First, the system throughputs and their behaviors are considered with both queueing network analysis and simulation, and it is shown for a fixed routing model that the system throughput in the case of finite local buffers is greater than in the case of infinite local buffers. For a fixed versus dynamic routing rule, it is also found that the throughput in the former case can be close to the one in the latter case by changing the setting parameters. Next, the design problems of maximizing the system throughput are considered numerically for fixed and dynamic routing cases. Then, it is seen that better combination of design variables is a class of the monotonicity in local buffers, service rates, and routing probabilities.  相似文献   

6.
Using the metaphor of swarm intelligence, ant-based routing protocols deploy control packets that behave like ants to discover and optimize routes between pairs of nodes. These ant-based routing protocols provide an elegant, scalable solution to the routing problem for both wired and mobile ad hoc networks. The routing problem is highly nonlinear because the control packets alter the local routing tables as they are routed through the network. We mathematically map the local rules by which the routing tables are altered to the dynamics of the entire networks. Using dynamical systems theory, we map local protocol rules to full network performance, which helps us understand the impact of protocol parameters on network performance. In this paper, we systematically derive and analyze global models for simple ant-based routing protocols using both pheromone deposition and evaporation. In particular, we develop a stochastic model by modeling the probability density of ants over the network. The model is validated by comparing equilibrium pheromone levels produced by the global analysis to results obtained from simulation studies. We use both a Matlab simulation with ideal communications and a QualNet simulation with realistic communication models. Using these analytic and computational methods, we map out a complete phase diagram of network behavior over a small multipath network. We show the existence of both stable and unstable (inaccessible) routing solutions having varying properties of efficiency and redundancy depending upon the routing parameters. Finally, we apply these techniques to a larger 50-node network and show that the design principles acquired from studying the small model network extend to larger networks.  相似文献   

7.
8.
We address the problem of controlling an assembly system in which the processing times as well as the types of subassemblies are stochastic. The quality (or performance) of the final part depends on the characteristics of the subassemblies to be assembled, which are not constant. Furthermore, the processing time of a subassembly is random. We analyze the trade-off between the increase in the potential value of parts gained by delaying the assembly operation and the inventory costs caused by this delay. We also consider the effects of processing time uncertainty. Our problem is motivated by the assembly of passive and active plates in flat panel display manufacturing. We formulate the optimal control problem as a Markov decision process. However, the optimal policy is very complex, and we therefore develop simple heuristic policies. We report the results of a simulation study that tests the performance of our heuristics. The computational results indicate that the heuristics are effective for a wide variety of cases.  相似文献   

9.
Financial markets are often fragmented, introducing the possibility that quotes in identical securities may become crossed or locked. There are a number of theoretical explanations for the existence of crossed and locked quotes, including competition, simultaneous actions, inattentiveness, fee structure and market access. In this paper, we perform a simulation experiment designed to examine the effect of simple order routing procedures on the properties of a fragmented market consisting of a single security trading in two independent limit order books. The quotes in the two markets are connected solely by the routing decision of the market participants. We report on the health of the consolidated market as measured by the duration of crossed and locked states, as well as the spread and the volatility of transaction prices in the consolidated market. We aim to quantify exactly how the prevalence of order routing among a population of market participants affects properties of the consolidated market. Our model contributes to the zero-intelligence literature by treating order routing as an experimental variable. Additionally, we introduce a parsimonious heuristic for limit order routing, allowing us to study the effects of both market order routing and limit order routing. Our model refines intuition for the sometimes subtle relationships between the prevalence of order routing and various market measures. Our model also provides a benchmark for more complex agent-based models.  相似文献   

10.
This paper presents a dissimilarity maximization method (DMM) for real-time routing selection and compares it via simulation with typical priority rules commonly used in scheduling and control of flexible manufacturing systems (FMSs). DMM aims to reduce the congestion in the system by selecting a routing for each part among its alternative routings such that the overall dissimilarity among the selected routings is maximized. In order to evaluate the performance of DMM, a random FMS, where the product mix is not known prior to production and off-line scheduling is not possible, is selected for the simulation study. A software environment that consists of a computer simulation model, which mimics a physical system, a C++ module, and a linear program solver is used to implement the DMM concept. In addition to DMM, the simulation study uses two priority rules for routing (i.e., machine) selection and seven priority rules for selecting parts awaiting service at machine buffers. The results show (1) DMM outperforms the other two routing selection rules on production rate regardless of the part selection rule used, and (2) its performance is highly dependent on the part selection rules it is combined with.  相似文献   

11.
12.
Effects of cellular pharmacology on drug distribution in tissues.   总被引:2,自引:0,他引:2       下载免费PDF全文
The efficacy of targeted therapeutics such as immunotoxins is directly related to both the extent of distribution achievable and the degree of drug internalization by individual cells in the tissue of interest. The factors that influence the tissue distribution of such drugs include drug transport; receptor/drug binding; and cellular pharmacology, the processing and routing of the drug within cells. To examine the importance of cellular pharmacology, previously treated only superficially, we have developed a mathematical model for drug transport in tissues that includes drug and receptor internalization, recycling, and degradation, as well as drug diffusion in the extracellular space and binding to cell surface receptors. We have applied this "cellular pharmacology model" to a model drug/cell system, specifically, transferrin and the well-defined transferrin cycle in CHO cells. We compare simulation results to models with extracellular diffusion only or diffusion with binding to cell surface receptors and present a parameter sensitivity analysis. The comparison of models illustrates that inclusion of intracellular trafficking significantly increases the total transferrin concentration throughout much of the tissue while decreasing the penetration depth. Increasing receptor affinity or tissue receptor density reduces permeation of extracellular drug while increasing the peak value of the intracellular drug concentration, resulting in "internal trapping" of transferrin near the source; this could account for heterogeneity of drug distributions observed in experimental systems. Other results indicate that the degree of drug internalization is not predicted by the total drug profile. Hence, when intracellular drug is required for a therapeutic effect, the optimal treatment may not result from conditions that produce the maximal total drug distribution. Examination of models that include cellular pharmacology may help guide rational drug design and provide useful information for whole body pharmacokinetic studies.  相似文献   

13.
A two-stage culture strategy was studied for continuous high-level production of a foreign protein in the chemically inducible T7 expression system. The first stage is dedicated to the maintenance of plasmid-bearing cells and the second stage to the target protein synthesis by induction of cells coming from the first stage. On entering the second stage, recombinant cells undergo a gradual induction of the target gene expression. These plasmid-bearing cells experience dynamic changes in intracellular compositions and specific growth rates with their individual residence times. Therefore, the overall cultural characteristics in the production stage are really averages of the contributions from the various cells with different residence times. The behavior of the two-stage culture is described by a model, which accounts for dynamic variations of cell growth and protein synthesis rates with cell residence times. Model simulations were compared with experimental results at a variety of operating conditions such as inducer concentration and dilution rate. This model is useful for understanding the behavior of two-stage continuous cultures. (c) 1993 John Wiley & Sons, Inc.  相似文献   

14.
The evolving manufacturing environment is characterized by a drive toward increasing flexibility. One possible manifestation of flexibility within an FMS is in the form of routing flexibility. Providing this typically is an expensive proposition, and system designers therefore aim to provide only the required levels commensurate with a given set of operating conditions. This paper presents a framework based on a Taguchi experimental design for studying the nature of the impact of varying levels of routing flexibility on the performance of an FMS. Simulation results indicate that increases in routing flexibility, when made available at the cost of an associated penalty on operation processing time, is not always beneficial. There is an optimal flexibility level, beyond which system performance deteriorates, as judged by the makespan measure of performance. It is suggested that the proposed methodology can be used in practice for not only setting priorities on specific design and control factors but also for highlighting likely factor level combinations that could yield near-optimal shop performance.  相似文献   

15.
Procko E  Gaudet R 《Biochemistry》2008,47(21):5699-5708
The transporter associated with antigen processing (TAP), an ABC transporter, pumps cytosolic peptides into the endoplasmic reticulum, where the peptides are loaded onto class I MHC molecules for presentation to the immune system. Transport is fueled by the binding of ATP to two cytosolic nucleotide-binding domains (NBDs) and ATP hydrolysis. We demonstrate biochemically that there are two electrostatic interactions across the interface between the two TAP NBDs and that these interactions are important for peptide transport. Notably, disrupting these interactions by mutagenesis does not greatly alter the ATP hydrolysis rate in an isolated NBD model system, suggesting that the interactions function at alternative stages in the transport cycle. The data support the general model for ABC transporters in which the NBDs form a tight, closed conformation during transport. Our results are discussed in relation to other ABC transporters that do or do not conserve potential interacting residues of opposite charges at the homologous positions.  相似文献   

16.
The primary goal of this study was to construct a simulation model of a biofeedback brain-computer interface (BCI) system to analyze the effect of biofeedback training on BCI users. A mathematical model of a man-machine visual-biofeedback BCI system was constructed to simulate a subject using a BCI system to control cursor movements. The model consisted of a visual tracking system, a thalamo-cortical model for EEG generation, and a BCI system. The BCI system in the model was realized for real experiments of visual biofeedback training. Ten sessions of visual biofeedback training were performed in eight normal subjects during a 3-week period. The task was to move a cursor horizontally across a screen, or to hold it at the screen’s center. Experimental conditions and EEG data obtained from real experiments were then simulated with the model. Three model parameters, representing the adaptation rate of gain in the visual tracking system and the relative synaptic strength between the thalamic reticular and thalamo-cortical cells in the Rolandic areas, were estimated by optimization techniques so that the performance of the model best fitted the experimental results. The serial changes of these parameters over the ten sessions, reflecting the effects of biofeedback training, were analyzed. The model simulation could reproduce results similar to the experimental data. The group mean success rate and information transfer rate improved significantly after training (56.6 to 81.1% and 0.19 to 0.76 bits/trial, respectively). All three model parameters displayed similar and statistically significant increasing trends with time. Extensive simulation with systematic changes of these parameters also demonstrated that assigning larger values to the parameters improved the BCI performance. We constructed a model of a biofeedback BCI system that could simulate experimental data and the effect of training. The simulation results implied that the improvement was achieved through a quicker adaptation rate in visual tracking gain and a larger synaptic gain from the visual tracking system to the thalamic reticular cells. In addition to the purpose of this study, the constructed biofeedback BCI model can also be used both to investigate the effects of different biofeedback paradigms and to test, estimate, or predict the performances of other newly developed BCI signal processing algorithms.  相似文献   

17.
In this paper, we study job shop-like flexible manufacturing systems (FMSs) with a discrete material handling system (MHS). In such FMSs, the MHS is a critical device, the unavailability of which may induce transfer blockings of the machines. The FMS devices therefore are hierarchically structured into primary and secondary devices to manage such blocking and avoid deadlocks in these FMSs. For evaluating the quantitative steady-state performance of such FMSs, we propose an analytical queueing network model that relies on an approximate method proposed for analyzing computer systems with simultaneous possessions of resources. Such a model is obtained using the concept of passive resources and by aggregating the FMS workload data so that models are much more tractable. The analytical results are validated against discrete event simulation and shown to be very encouraging. We also show how to increase their robustness, especially under light workload conditions, by modifying an assumption of the method concerning service time distributions.  相似文献   

18.
In this paper, we consider the problem of scheduling divisible loads on arbitrary graphs with the objective to minimize the total processing time of the entire load submitted for processing. We consider an arbitrary graph network comprising heterogeneous processors interconnected via heterogeneous links in an arbitrary fashion. The divisible load is assumed to originate at any processor in the network. We transform the problem into a multi-level unbalanced tree network and schedule the divisible load. We design systematic procedures to identify and eliminate any redundant processor–link pairs (those pairs whose consideration in scheduling will penalize the performance) and derive an optimal tree structure to obtain an optimal processing time, for a fixed sequence of load distribution. Since the algorithm thrives to determine an equivalent number of processors (resources) that can be used for processing the entire load, we refer to this approach as resource-aware optimal load distribution (RAOLD) algorithm. We extend our study by applying the optimal sequencing theorem proposed for single-level tree networks in the literature for multi-level tree for obtaining an optimal solution. We evaluate the performance for a wide range of arbitrary graphs with varying connectivity probabilities and processor densities. We also study the effect of network scalability and connectivity. We demonstrate the time performance when the point of load origination differs in the network and highlight certain key features that may be useful for algorithm and/or network system designers. We evaluate the time performance with rigorous simulation experiments under different system parameters for the ease of a complete understanding.  相似文献   

19.
This article examines the performance effects caused by repeated part visits at the workstations of a flexible manufacturing system (FMS). Such repeated part visits to the same workstations are commonly associated with fixture changes for machining complex parts, reclamping, and remounting or reorienting them. Since each of the repeated visits to a workstation may require different processing requirements, the resulting queueing network does not have a product form solution. We therefore develop an approximate mean value analysis model for performance evaluation of an FMS that may produce multiple part types with distinct repeated visits. We provide numerical examples and validate the accuracy of our solution algorithm against simulation. These examples show that the proposed model produces accurate throughput and utilization predictions with minimal computational efforts. These examples reveal that increasing the total pallet population may result in a reduction of the aggregate throughput, and that the FMS's performance could be more sensitive to the mix of pallets and part routes than to the total number of pallets. Our model will be of use, in particular, when managers wish to control individual operations (e.g., to adjust individual operation times to achieve economic savings in tool wear and breakage costs) or to investigate the performance implications of route changes due to alternate assignments of particular manufacturing tasks to certain workstations.  相似文献   

20.
A mathematical model of insulin sensitive glucose transporter regulation is developed. Model structure is based on experimental evidence from adipocytes and myocytes. Model parameters correspond with known cellular processes. As an example, computer simulation results are compared with data from rat adipocytes. Cellular processes explicitly represented in the model include state-dependent glucose transporter synthesis and degradation rates, insulin sensitive glucose transporter translocation rates, and a glucose transporter endocytosis rate. Most of these processes are represented as first-order events. Using more complex representations of the model structure (e.g. higher order rate constants or saturable pathways) or alternative structures did not result in qualitatively better results. The model is able to accurately simulate the insulin sensitive, insulin concentration dependent, reversible translocation of glucose transporters observed in normal adipocytes. The model is also able to accurately simulate the changes in regulation of glucose transporter translocation observed with increases in cell surface area. Finally, the model can simulate pathogenic states which induce impairment of glucose transporter regulation (e.g. altered glucose transporter regulation in adipocytes from rats on high fat diets, rats with streptozotocin induced diabetes, and fasted rats). Since the structure of our model is sufficient to explain glucose transporter regulation in both normal and pathological states, it may aid in understanding the post-receptor components of insulin resistance (decreased sensitivity or responsiveness to insulin) seen in pathological states such as obesity and diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号