首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Through radical redesign of business processes and systems, policies, and organizational structures, the business process reengineering (BPR) effort was initiated in the manufacturing industry to seek performance breakthroughs. This paper describes a novel approach to the BPR, which applies flexible manufacturing systems (FMSs) design and analysis technologies, such as simulation, multicriteria decision support, and artificial intelligence (AI). These technologies are integrated to design and analyze specific FMS models related to the proposed technical and managerial changes in an industrial case. First, the literature is reviewed to obtain an understanding of the BPR concept and the role of FMS design and analysis in BPR. Second, a decision-making support system is developed to illustrate how the FMS design and analysis would affect BPR. Finally, a summary of the integrated approach practice in industry and conclusions are presented. The paper shows that the key to a successful BPR approach is the identification and analysis of specific proposed models. It also demonstrates that the integrated approach enables engineers to improve the efficiency of BPR.  相似文献   

2.
Deadlock-free operation of flexible manufacturing systems (FMSs) is an important goal of manufacturing systems control research. In this work, we develop the criteria that real-time FMS deadlock-handling strategies must satisfy. These criteria are based on a digraph representation of the FMS state space. Control policies for deadlock-free operation are characterized as partitioning cuts on this digraph. We call these structural control policies (SCPs) because, to avoid deadlock, they must guarantee certain structural properties of the subdigraph containing the empty state; namely, that it is strongly connected. A policy providing this guarantee is referred to as correct. Furthermore, an SCP must be configurable and scalable; that is, its correctness must not depend on configuration-specific system characteristics and it must remain computationally tractable as the FMS grows in size. Finally, an SCP must be efficient; that is, it must not overly constrain FMS operation. We formally develop and define these criteria, formulate guidelines for developing policies satisfying these criteria, and then provide an example SCP development using these guidelines. Finally, we present an SCP that guarantees deadlock-free buffer space allocation for FMSs with no route restrictions.  相似文献   

3.
Loading in flexible manufacturing systems (FMSs) is affected by the characteristics of the FMS under analysis, by the type of plant where the FMS is introduced, and by the production planning hierarchy where the loading module operates. We propose an analysis of the various aspects that influence the problem formulation, identifying the alternatives available in real systems and possible future evolutions. We then provide a survey of different approaches proposed in the literature to tackle the loading problem. Articles are classified according to the type of FMS analyzed, the objective function, and the constraints. Finally, based on our analysis, we suggest some problem issues which need to be addressed, and also directions for future research.  相似文献   

4.
The increased use of flexible manufacturing systems to provide customers with diversified products efficiently has created a significant set of operational challenges for managers. This technology poses a number of decision problems that need to be solved by researchers and practitioners. In the literature, there have been a number of attempts to solve design and operational problems. Special attention has been given to machine loading problems, which involve the assignment of job operations and allocation of tools and resources to optimize specific measures of productivity. Most existing studies focus on modeling the problem and developing heuristics in order to optimize certain performance metrics rather than on understanding the problem and the interaction between the different factors in the system. The objective of this paper is to study the machine loading problem. More specifically, we compare operation aggregation and disaggregation policies in a random flexible manufacturing system (FMS) and analyze its interaction with other factors such as routing flexibility, sequencing flexibility, machine load, buffer capacity, and alternative processing-time ratio. For this purpose, a simulation study is conducted and the results are analyzed by statistical methods. The analysis of results highlights the important factors and their levels that could yield near-optimal system performance.  相似文献   

5.
Global competition, advancements in technology and ever changing customers’ demand have made the manufacturing companies to realize the importance of flexible manufacturing systems (FMS). These organizations are looking at FMS as a viable alternative to enhance their competitive edge. But, implementation of this universally accepted and challenging technology is not an easy task. A large number of articles have been reviewed and it is found that the existing literature lacks in providing a clear picture about the implementation of FMS. In this paper, work of various researchers has been studied and it is found that it is really a very difficult task for any organization to transform into FMS on the basis of existing research results. A wide gap exists between the proposed approaches/algorithms for the design of different components of FMS and the real-life complexities. Besides describing the gap in various issues related to FMS, some barriers, which inhibit the adaptation and implementation of FMS, have also been identified in this paper.  相似文献   

6.
Equipment failures in an FMS are significant to performance and can lead to costly, incorrect decisions. Fortunately, effectiveness measurement techniques can be mapped to clever modeling frameworks to help predict, track, and then improve upon the FMS performability or mission effectiveness, and improve maintenance. This article provides sources and guidelines for efficient and effective FMS modeling, a framework for applying the modeling to predict the impact on customers from their point of view, and a method for tying it all together for improving the FMS effectiveness. It is not enough to simply examine the working and failed states of an FMS or even to calculate common reliability metrics. It is necessary to consider the FMS as a whole, and that system includes the needs of the customer and the business. It is also necessary to be purposeful about the measures of performance selected and to support the measures of effectiveness. In this article, we present: a framework for considering customer needs in the measures of effectiveness for FMS; modeling approaches for solving for effectiveness measures; and an example to show how to apply it to an FMS, to improve it or plan for meeting specific customer needs.  相似文献   

7.
The increased use of flexible manufacturing systems to efficiently provide customers with diversified products has created a significant set of operational challenges for managers. Many issues concerning procedures and policies for the day-to-day operation of these systems still are unresolved. Previous studies in this area have concentrated on various problems by isolating or simplifying the systems under study. The primary objective of this study is to extend previous research by examining the effects of scheduling rules and routing flexibility on the performance of a constrained, random flexible manufacturing system (FMS). Other experimental factors considered are shop load, shop configuration, and system breakdowns. Within the bounds of this experiment, the results indicate that, in the presence of total routing flexibility, the effects of shop load, system breakdowns, and scheduling rules are significantly dampened. In particular, when total routing flexibility exists, the choice of scheduling rules is not critical. We also show that the behavior of scheduling rules in a more constrained FMS environment (i.e., where system breakdowns occur and material handling capability is limited) is consistent with the findings of previous research conducted under less constrained environments. Finally, results indicate that the shop configuration factor has little or no impact on a system's flow-time performance.  相似文献   

8.
In this paper, we study job shop-like flexible manufacturing systems (FMSs) with a discrete material handling system (MHS). In such FMSs, the MHS is a critical device, the unavailability of which may induce transfer blockings of the machines. The FMS devices therefore are hierarchically structured into primary and secondary devices to manage such blocking and avoid deadlocks in these FMSs. For evaluating the quantitative steady-state performance of such FMSs, we propose an analytical queueing network model that relies on an approximate method proposed for analyzing computer systems with simultaneous possessions of resources. Such a model is obtained using the concept of passive resources and by aggregating the FMS workload data so that models are much more tractable. The analytical results are validated against discrete event simulation and shown to be very encouraging. We also show how to increase their robustness, especially under light workload conditions, by modifying an assumption of the method concerning service time distributions.  相似文献   

9.
Flexible manufacturing Systems (FMSs) typically operate at 70–80% utilization, which is much higher than the utilization of traditional machines that can operate with as low as 20% utilization. A result is that an FMS may incur four times more wear and tear than a traditional system. This requests the execution of effective maintenance plans on FMSs. While maintenance actions can reduce the effects of breakdowns due to wear-outs, random failures are still unavoidable. It is important to understand the implications of a given maintenance plan on an FMS before its implementation. This paper discusses a procedure that combines simulation and analytical models to analyze the effects of corrective, preventive, and opportunistic maintenance policies on the performance of an FMS. The FMS performance is measured by its operational availability index, which is determined using the production output rate of the FMS under a variety of time between failure distributions and different operational conditions. The effects of various maintenance policies on FMS performance are simulated and the results are compared to determine the best policy for a given system.  相似文献   

10.
This paper presents a hierarchical approach to scheduling flexible manufacturing systems (FMSs) that pursues multiple performance objectives and considers the process flexibility of incorporating alternative process plans and resources for the required operations. The scheduling problem is solved at two levels: the shop level and the manufacturing system level. The shop level controller employs a combined priority index developed in this research to rank shop production orders in meeting multiple scheduling objectives. To overcome dimensional complexity and keep a low level of work-in-process inventory, the shop controller first selects up to three production orders with the highest ranking as candidates and generates all possible release sequences for them, with or without multitasking. These sequences are conveyed to the manufacturing system controller, who then performs detailed scheduling of the machines in the FMS using a fixed priority heuristic for routing parts of multiple types while considering alternative process plans and resources for the operations. The FMS controller provides feedback to the shop controller with a set of suggested detailed schedules and projected order completion times. On receiving these results, the shop controller further evaluates each candidate schedule using a multiple-objective function and selects the best schedule for execution. This allows multiple performance objectives of an FMS to be achieved by the integrated hierarchical scheduling approach.  相似文献   

11.
This introduction article attempts to present some major issues relating to the integration of process planning and production planning and control (PPC) for flexible manufacturing systems (FMSs). It shows that the performance of an FMS can be significantly improved and FMS capabilities more effectively utilized by integrating process planning and PPC functions. The various types of flexibility to be planned and provided for in process planning and manufacturing are summarized in the article, as well as emerging conceptual frameworks for integration, along with their implementation requirements and problems. Distinctive elements that differentiate these frameworks, such as the extent of integration of process planning and PPC activities, number of alternative process plans, and the time at which numerical control programs are generated, are discussed, followed by a brief summary of the articles compiled for this special issue.  相似文献   

12.
We present an analytical model for performance prediction of flexible manufacturing systems (FMSs) with a single discrete material-handling device (MHD). This configuration of FMS is significant for many reasons: it is commonly found in industry, it simplifies material-handling control, it is amenable to analytical modeling, and it forms a building block for more complex systems. Standard queueing models are inadequate to analyze this configuration because of the need to take into consideration many nontrivial issues such as state-dependent routing, interference from the MHD, and the analysis of the MHD. To account for state-dependent routing, we develop an iterative method that is built around mean value analysis. To analyze the MHD interference, we use two queueing network models. In the first, we ignore queueing at the MHD but model the interference from the MHD by inflating the station service times. The second network models the queueing for the MHD and estimates the blocking (inflation) times needed for the first model. By iterating between the two networks, we are able to predict the performance of this configuration of FMS. Our analytical estimates are validated against discrete event simulation and shown to be quite accurate for initial system design.  相似文献   

13.
Flow control of flexible manufacturing systems (FMSs) addresses an important real-time scheduling requirement of modern manufacturing facilities, which are prone to failures and other controllable or stochastic discrete events affecting production capacity, such as change of setup and maintenance scheduling. Flow controllers are useful both in the coordination of interconnected flexible manufacturing cells through distributed scheduling policies and in the hierarchical decomposition of the planning and scheduling problem of complex manufacturing systems. Optimal flow-control policies are hedging-point policies characterized by a generally intractable system of stochastic partial differential equations. This article proposes a near optimal controller whose design is computationally feasible for realistic-size systems. The design exploits a decomposition of the multiple-part-type problem to many analytically tractable one-part-type problems. The decomposition is achieved by replacing the polyhedra production capacity sets with inscribed hypercubes. Stationary marginal densities of state variables are computed iteratively for successive trial controller designs until the best inscribed hypercubes and the associated optimal hedging points are determined. Computational results are presented for an illustrative example of a failureprone FMS.  相似文献   

14.
Despite their strategic potential, tool management issues in flexible manufacturing systems (FMSs) have received little attention in the literature. Nonavailability of tools in FMSs cuts at the very root of the strategic goals for which such systems are designed. Specifically, the capability of FMSs to economically produce customized products (flexibility of scope) in varying batch sizes (flexibility of volume) and delivering them on an accelerated schedule (market response time) is seriously hampered when required tools are not available at the time needed. On the other hand, excess inventory of tools in such systems represents a significant cost due to the expensive nature of FMS tool inventory. This article constructs a dynamic tool requirement planning (DTRP) model for an FMS tool planning operation that allows dynamic determination of the optimal tool replenishments at the beginning of each arbitrary, managerially convenient, discrete time period. The analysis presented in the article consists of two distinct phases: In the first phase, tool demand distributions are obtained using information from manufacturing production plans (such as master production schedule (MPS) and material requirement plans (MRP)) and general tool life distributions fitted on actual time-to-failure data. Significant computational reductions are obtained if the tool failure data follow a Weibull or Gamma distribution. In the second phase, results from classical dynamic inventory models are modified to obtain optimal tool replenishment policies that permit compliance with such FMS-specific constraints as limited tool storage capacity and part/tool service levels. An implementation plan is included.  相似文献   

15.
Flexible manufacturing systems (FMSs) are a class of automated systems that can be used to improve productivity in batch manufacturing. Four stages of decision making have been defined for an FMS—the design, planning, scheduling, and control stages. This research focuses on the planning stage, and specifically in the area of scheduling batches of parts through the system. The literature to date on the FMS planning stage has mostly focused on the machine grouping, tool loading, and parttype selection problems. Our research carries the literature a step further by addressing the problem of scheduling batches of parts. Due to the use of serial-access material-handling systems in many FMSs, the batch-scheduling problem is modeled for a flexible flow system (FFS). This model explicitly accounts for setup times between batches that are dependent on their processing sequence. A heuristic procedure is developed for this batch-scheduling problem—the Maximum Savings (MS) heuristic. The MS heuristic is based upon the savings in time associated with a particular sequence and selecting the one with the maximum savings. It uses a two-phase method, with the savings being calculated in phase I, while a branch-and-bound procedure is employed to seek the best heuristic solution in phase II. Extensive computational results are provided for a wide variety of problems. The results show that the MS heuristic provides good-quality solutions.  相似文献   

16.
Early flexible manufacturing system (FMS) production planning models exhibited a variety of planning objectives; typically, these objectives were independent of the overall production environment. More recently, some researchers have proposed hierarchical production planning and scheduling models for FMS. In this article, we examine production planning of FMS in a material requirements planning (MRP) environment. We propose a hierarchical structure that integrates FMS production planning into a closed-loop MRP system. This structure gives rise to the FMS/MRP rough-cut capacity planning (FMRCP) problem, the FMS/MRP grouping and loading (FMGL) problem, and the FMS/MRP detailed scheduling problem. We examine the FMRCP and FMGL problems in detail and present mathematical programming models for each of these problems. In particular, the FMRCP problem is modeled as a generalized assignment problem (GAP), and a GAP-based heuristic procedure is defined for the problem. We define a two-phase heuristic for the FMGL problem and present computational experience with both heuristics. The FMRCP heuristic is shown to solve problems that exhibit a dependent-demand relation within the FMS and with FMS capacity utilization as high as 99 percent. The FMGL heuristic requires very little CPU time and obtains solutions to the test problems that are on average within 1.5 percent of a theoretical lower bound. This FMS/MRP production planning framework, together with the resulting models, constitutes an important step in the integration of FMS technology with MRP production planning. The hierarchical planning mechanism directly provides for system-level MRP planning priorities to induce appropriate production planning and control objectives on the FMS while simultaneously allowing for necessary feedback from the FMS. Moreover, by demonstrating the tractability of the FMRCP and FMGL problems, this research establishes the necessary groundwork upon which to explore systemwide issues pertaining to the coordination of the hierarchical structure.  相似文献   

17.
The evolution of manufacturing systems, according to changing internal and external conditions, requires design and assessment techniques that consider both strategic and financial criteria to evaluate the suitability of the Flexible and Reconfigurable system solutions in addressing these variations. In this paper, a fuzzy multi-objective mixed integer optimization model to evaluate RMS investments used in a multiple product demand environment is presented. The model incorporates in-house production and outsourcing options, machine acquisition and disposal costs, operational costs, and re-configuration cost and duration for the utilized modular machines. The resulting system configurations are optimized for lifecycle costs, responsiveness performance, and system structural complexity simultaneously. A complexity metric that incorporates the quantity of information using an entropy approach is used to represent the inherent structural complexity of the considered system configurations. It accounts for the complexity of the machine modules in a manufacturing system through the use of an index derived from a newly developed manufacturing systems classification code, which captures the effect machine types and technologies on the system’s structural complexity. A metric is proposed to measure the responsiveness ability and efficiency as well as the overall capability of each machine and effectiveness of machines changeover. The application of the developed planning and assessment model that incorporates these three criteria is illustrated with a case study where FMS and RMS alternatives were compared. The suitable conditions for investing in RMS are also discussed.  相似文献   

18.
This paper introduces a generic decision-making framework for assigning resources of a manufacturing system to production tasks. Resources are broadly defined production units, such as machines, human operators, or material handling vehicles; and tasks are activities performed by resources. In the specific context of FMS, resources correspond to individual machines; tasks correspond to operations to be performed on parts. The framework assumes a hierarchical structure of the system and calls for the execution of four consecutive steps to make a decision for the assignment of a resource to a task. These steps are 1) establishment of decision-making criteria, 2) formation of alternative assignments, 3) estimation of the consequences of the assignments, and 4) selection of the best alternative assignment. This framework has been applied to an existing FMS as an operational policy that decides what task will be executed on which resource of this FMS. Simulation runs provide some initial results of the application of this policy. It is shown that the policy provides flexibility in terms of system performance and computational effort.  相似文献   

19.
In this article, we present the design and implementation of a flexible manufacturing system (FMS) control platform based on a programmable logic controller (PLC) and a personal computer (PC)-based visual man-machine interface (MMI) and data acquisition (DAS) unit. The key aspect of an FMS is its flexibility to adapt to changes in a demanding process operation. The PLC provides feasible solutions to FMS applications, using PC-based MMI/DAS, whereby PLCs are optimized for executing rapid sequential control strategies. PCs running MMI/DAS front-ends make intuitive operation interfaces, full of powerful graphics and reporting tools. Information from the PC can be distributed through a company's local area network or web using client-server technologies. Currently, with the convergence of underlying microprocessor technology and software programming techniques, many users find that PLCs provide a cost-effective solution to real-time control in small- to medium-sized process plants, especially when combined with supervisory PCs using hybrid systems. The major work of this article demonstrates that PLCs are responsive to rapid and repetitious control tasks, using PCs that present the flow of information automation and accept operator instructions, thereby providing the user a tool to modify and monitor the process as the requirements change.  相似文献   

20.
Flexibility in part process representation and in highly adaptive routing algorithms are two major sources for improvement in the control of flexible manufacturing systems (FMSs). This article reports the investigation of the impact of these two kinds of flexibilities on the performance of the system. We argue that, when feasible, the choices of operations and sequencing of the part process plans should be deferred until detailed knowledge about the real-time factory state is available. To test our ideas, a flexible routing control simulation system (FRCS) was constructed and a programming language for modeling FMS part process plans, control strategies, and environments of the FMS was designed and implemented. In addition, a scheme for implementing flexible process routing called data flow dispatching rule (DFDR) was derived. The simulation results indicate that flexible processing can reduce mean flow time while increasing system throughput and machine utilization. We observed that this form of flexibility makes automatic load balancing of the machines possible. On the other hand, it also makes the control and scheduling process more complicated and calls for new control algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号