首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasive plants dramatically shift the structure of native wetland communities. However, less is known about how they affect belowground soil properties, and how those effects can vary depending on time since invasion. We hypothesized that invasion of a wetland by a widespread invasive plant (Typha × glauca) would result in changes in soil nutrients, denitrification, and bacterial communities, and that these effects would increase with time since invasion. We tested these hypotheses by sampling Typha-invaded sites of different ages (~40, 20, and 13 years), a Typha-free, native vegetation site, and a restored site (previously invaded ~30–40 years ago) but that had Typha return within 2 years of the restoration. At each site, we measured Typha stem density, plant species richness, soil nutrients, denitrification rates, and the abundance and composition of bacterial denitrifier communities. All Typha-dominated sites had the least plant species richness regardless of time since invasion. Additionally, sites that were invaded the longest exhibited significantly higher concentrations of soil organic matter, nitrate, and ammonium than the native site. In contrast, denitrification was higher in sites invaded more recently. Denitrifier diversity for the nirS gene was also significantly different, with highest nirS diversity in sites invaded the longest. Interestingly, the denitrifier communities within the restored site were most similar to the ones in T. × glauca sites, suggesting a legacy effect. Our study suggests this invader can alter important ecosystem properties, such as native species richness, nutrient pools, and transformations, as well as bacterial community composition depending on time since invasion.  相似文献   

2.
Humans are visiting Antarctica in increasing numbers, and the ecological effect of rapid soil habitat alteration due to human-induced physical disturbance is not well understood. An experimental soil disturbance trial was set up near Scott Base on Ross Island, to investigate the immediate and short-term changes to bacterial community structure, following surface soil disturbance. Three blocks, each comprising an undisturbed control, and an area disturbed by removing the top 2 cm of soil, were sampled over a time series (0, 7, 14, 21, and 35 days), to investigate changes to bacterial community structure using DNA profiling by terminal restriction fragment length polymorphism. The simulated disturbance did not cause any major shifts in the structure of the bacterial communities over the 35-day sampling period. Ordination showed that the bacterial community composition correlated strongly with soil EC (R 2 = 0.55) and soil pH (R 2 = 0.67), rather than the removal of the top 2 cm of surface material. Although the replicate blocks were visually indistinguishable from one another, high local spatial variability of soil chemical properties was found at the study site and different populations of bacterial communities occurred within 2 m of one another, within the same landscape unit. Given the current knowledge of the drivers of bacterial community structure, that is, soil EC, soil pH, and soil moisture content, a follow-up investigation incorporating DNA and RNA-based analyses over a time frame of 2–3 years would lead to a greater understanding of the effects of soil disturbance on bacterial communities.  相似文献   

3.
Invasive plants have wide-ranging impacts on native systems including reducing native plant richness and altering soil chemistry, microbes, and nutrient cycling. Increasingly, these effects are found to linger long after removal of the invader. We examined how soil chemistry, bacterial communities, and litter decomposition varied with cover of Euonymus fortunei, an invasive evergreen liana, in two central Kentucky deciduous forests. In one forest, E. fortunei invaded in the late 1990s but invasion remained patchy and we paired invaded and uninvaded plots to examine the associations between E. fortunei cover and our response variables. In the second forest, E. fortunei had completely invaded the forest by 2005; areas where it had been selectively removed by 2010 were paired with an adjacent invaded plot. Where E. fortunei had patchily invaded, E. fortunei patches had up to 3.5× nitrogen, 2.7× carbon, and 1.9× more labile glomalin in soils than uninvaded plots, whereas there were no differences in soil characteristics between invaded and removal plots. In the patchily invaded forest, bacterial community composition varied among invaded and non-invaded plots, whereas bacterial communities did not vary among invaded and removal plots. Finally, E. fortunei leaf litter decomposed faster (k = 4.91 year?1) than the native liana (k = 3.77 year?1), Vitis vulpina; decomposition of both E. fortunei and V. vulpina was faster in invaded (k = 7.10 year?1) than removal plots (k = 4.77 year?1). Our findings suggest that E. fortunei invasion increases the rate of leaf litter decomposition via high-quality litter, alters the decomposition environment, and shifts in the soil biotic communities associated with a dense mat of wintercreeper. Land managers with limited resources should target the densest mats for the greatest restoration potential and remove wintercreeper patches before they establish dense mats.  相似文献   

4.
The growing concern about the effectiveness of reclamation strategies has motivated the evaluation of soil properties following reclamation. Recovery of belowground microbial community is important for reclamation success, however, the response of soil bacterial communities to reclamation has not been well understood. In this study, PCR-based 454 pyrosequencing was applied to compare bacterial communities in undisturbed soils with those in reclaimed soils using chronosequences ranging in time following reclamation from 1 to 20 year. Bacteria from the Proteobacteria, Chloroflexi, Actinobacteria, Acidobacteria, Planctomycetes and Bacteroidetes were abundant in all soils, while the composition of predominant phyla differed greatly across all sites. Long-term reclamation strongly affected microbial community structure and diversity. Initial effects of reclamation resulted in significant declines in bacterial diversity indices in younger reclaimed sites (1, 8-year-old) compared to the undisturbed site. However, bacterial diversity indices tended to be higher in older reclaimed sites (15, 20-year-old) as recovery time increased, and were more similar to predisturbance levels nearly 20 years after reclamation. Bacterial communities are highly responsive to soil physicochemical properties (pH, soil organic matter, Total N and P), in terms of both their diversity and community composition. Our results suggest that the response of soil microorganisms to reclamation is likely governed by soil characteristics and, indirectly, by the effects of vegetation restoration. Mixture sowing of gramineae and leguminosae herbage largely promoted soil geochemical conditions and bacterial diversity that recovered to those of undisturbed soil, representing an adequate solution for soil remediation and sustainable utilization for agriculture. These results confirm the positive impacts of reclamation and vegetation restoration on soil microbial diversity and suggest that the most important phase of microbial community recovery occurs between 15 and 20 years after reclamation.  相似文献   

5.
Metacommunity theory proposes that a collection of local communities are linked by dispersal and the resulting compositions are a product of both niche‐based (species sorting) and spatial processes. Determining which of these factors is most important in different habitats can provide insight into the regulation of community assembly. To date, the metacommunity organization of heterotrophic soil bacteria is largely unknown. Spatial variation of soil bacterial communities could arise from (1) the resource heterogeneity produced by plant communities through root exudation and/or litter inputs; (2) the heterogeneity of soil environmental properties; and (3) pure spatial processes, including dispersal limitation and stochastic assembly. Understanding the relative importance of these factors for soil bacterial community structure and function could increase our ability to restore soil communities. We utilized an ongoing tallgrass prairie restoration experiment in northeastern Kansas to assess if restoring native plant communities produced changes in bacterial communities 6 years after restoration. We further examined the relative importance of the spatial heterogeneity of plant communities, soil properties, and pure spatial effects for bacterial community structure in the old‐field restoration site. We found that soil bacterial communities were not influenced by plant restoration, but rather, by the local heterogeneity of soil environmental properties (16.9% of bacterial community variation) and pure spatial effects (11.1%). This work also stresses the idea that restoring bacterial communities can take many years to accomplish due to the inherent changes that occur to the soil after cultivation and the time it takes for the re‐establishment of soil quality.  相似文献   

6.
We investigated whether the seed banks of ex-arable lowland calcareous grasslands underwent restoration similar to that of the above-ground restoration, and whether this was influenced by seed-sowing or environmental conditions. We compared 40 sites, where some form of restoration work had been implemented between 2 and 60 years previously, with 40 paired reference sites of good quality calcareous grassland with no history of ploughing or agricultural improvement. We analysed differences between sites and between above- and below-ground vegetation using both a multivariate approach and proportions of selected plant attributes. Seed banks of reference sites were more characteristic of late successional communities, with attributes such as stress tolerance, perenniality and a reliance on fruit as the germinule form more abundant than in restoration sites. In restoration sites, these tended to decrease with restoration site isolation and increase with restoration site age and where soil nutrient conditions were more similar to reference sites (i.e. with relatively low phosphorus and high nitrogen). Seed bank communities of all sites differed considerably from above-ground communities, however, and no overall significant responses to site age, isolation or soil nutrients were detected by multivariate analyses of similarity of species between pairs of sites. Responses to different seeding methods were also barely detectable. While there is some indication from the plant attribute data that the regeneration potential contained in the seed banks of restored sites increasingly resembles that of references sites over time, even seed banks of good quality calcareous grassland are dominated by ruderal species. It is likely, therefore, that permanent seed banks do not facilitate the restoration of ex-arable grasslands.  相似文献   

7.
The Sanjiang Plain is the largest freshwater wetlands in Northeast China. In order to feed the growing population, about 84 % of the wetlands in this area have been converted to farmland, especially to paddy fields, since the 1950s. However, little is known about the influence of this conversion on soil microbial community composition. In this study, soil samples were collected from two natural wetlands dominated by plant species Carex lasiocarpa and Deyeuxia angustifolia and from a neighboring paddy field that was changed from wetland more than 10 years ago. The composition and diversity of bacterial communities in the soils were estimated by clone library analysis of nearly full length of 16S rDNA sequences. The results revealed that bacterial diversity was higher in paddy fields, and that the composition of bacterial communities differed among the three samples; the difference was more notable between the paddy field and two natural wetlands than between two natural wetlands. The distribution of clones into different bacterial phyla differed among soil samples, and the conversion from natural wetlands to paddy field increased the abundance of Proteobacteria and Firmicutes but decreased the abundance of Chloroflexi. About 63 % and 71 % of clones from two natural wetlands and 49 % of clones from the paddy field had <93 % similarity with known bacteria, suggesting that the majority of bacteria in natural wetland soils in the Sanjiang Plain are phylogenetically novel. In general, this study demonstrated that long-term conversion from natural wetlands to paddy field changes soil bacterial communities in the Sanjiang Plain.  相似文献   

8.
The long-term (18 years) effects of re-vegetating eroded soil on soil microbial biomass, community structure and diversity were investigated in a forest soil derived from Quaternary clay in the Red Soil Ecological Experimental Station of the Chinese Academy of Sciences. Large areas of land in this region of China have been subjected to severe soil erosion, characterised by the removal of the fertile surface soil and even the exposure of parental rock in some areas due to a combination of deforestation and heavy rainfall. The effects of planting eroded or uneroded soil with Pinus massoniana, Cinnamomum camphora or Lespedeza bicolor on the soil microbial community and chemical properties were assessed. Total soil microbial community DNA was extracted and bacterial 16 S rRNA gene fragments were amplified by PCR and analysed by terminal restriction fragment length polymorphism (T-RFLP). Microbial biomass carbon (Cmic) was measured by chloroform fumigation-extraction. Following the restoration there were significant increases in both Cmic and bacterial diversity (Shannon index), and significant changes in bacterial community structure. Erosion factors were significant only in minor dimensions suggesting that the restoration had been largely successful in terms of bacterial community structure. Compared with uneroded soil, Cmic recovered in L. bicolor and P. massoniana restored eroded plots and was significantly greater under these tree species than C. camphora, although soils in C. camphora restored plots displayed the highest bacterial diversity. The recovery of microbial biomass and diversity in the eroded plots was, to large extent, accompanied by the development of the same bacterial community structure as in the uneroded plots with erosion having relatively little effect on bacterial community structure.  相似文献   

9.
Soil fungal communities have high local diversity and turnover, but the relative contribution of environmental and regional drivers to those patterns remains poorly understood. Local factors that contribute to fungal diversity include soil properties and the plant community, but there is also evidence for regional dispersal limitation in some fungal communities. We used different plant communities with different soil conditions and experimental manipulations of both vegetation and dispersal to distinguish among these factors. Specifically, we compared native shrublands with former native shrublands that had been disturbed or converted to pasture, resulting in soils progressively more enriched in carbon and nutrients. We tested the role of vegetation via active removal, and we manipulated dispersal by adding living soil inoculum from undisturbed native sites. Soil fungi were tracked for 3 years, with samples taken at ten time points from June 2006 to June 2009. We found that soil fungal abundance, richness, and community composition responded primarily to soil properties, which in this case were a legacy of plant community degradation. In contrast, dispersal had no effect on soil fungi. Temporal variation in soil fungi was partly related to drought status, yet it was much broader in native sites compared to pastures, suggesting some buffering due to the increased soil resources in the pasture sites. The persistence of soil fungal communities over 3 years in this study suggests that soil properties can act as a strong local environmental filter. Largely persistent soil fungal communities also indicate the potential for strong biotic resistance and soil legacies, which presents a challenge for both the prediction of how fungi respond to environmental change and our ability to manipulate fungi in efforts such as ecosystem restoration.  相似文献   

10.
Invasive plants can have strong impacts on native communities, which have prompted intense efforts at invasive removal. However, relatively little is known about how native communities will reassemble after a dominant invader has been removed from the system. Legacy effects of invasive plants on soil microbial communities may alter native plant community reassembly long after the invader is gone. Here we found that arbuscular mycorrhizal fungal (AMF) communities have shown some recovery in experimental plots following 6 years of removal of the invasive Alliaria petiolata (garlic mustard, a species known to degrade AMF communities) in terms of taxonomic richness and community composition. However, despite this recovery, the density of A. petiolata at the beginning of the experiment (in 2004) still correlated with lower AMF richness and altered community composition after 6 years of annual weeding, suggesting long-term legacies of dense A. petiolata infestations. Because native plant and mycorrhizal fungal communities may show interdependence, reassembly of one community may be limited by the reassembly of the other. Restoration may be more effective if practices address both communities simultaneously.  相似文献   

11.
Soil invertebrate communities are fundamental components of wet meadow ecosystems. We compared soil invertebrate biodiversity between restored and native wet meadows to assess the effectiveness of restoration practices. Biodiversity and biomass were measured in 2002 and 2003 from four native and three restored sites located along a 100-km stretch of the Platte River in south-central Nebraska. The sites ranged in age from 3 to 6 years since restoration. Samples were collected during May, July, and September each year. Soil temperature, soil moisture, percent litter cover, and root mass were measured at each site. Twelve 20 × 20 × 25–cm soil blocks were extracted at each site; soil was washed through a 1-mm sieve; and invertebrates were identified, counted, and weighed. Native sites had higher Shannon and Simpson diversity values and contained greater invertebrate biomass than restored sites. Five invertebrate taxa (isopods, scarab beetles, click beetles, earthworms, and ants) were collected with enough frequency to assess restoration effects on their occurrence. Of these, only ants occurred more frequently in restored sites. Restored sites generally had less litter cover, lower root mass, lower soil moisture, and higher soil temperature than native sites. Current restoration practices may not be completely effective at returning sites to native conditions. Physical reconstruction of wet meadow topography and high-diversity reseeding may not be adequate to fully restore soil invertebrate communities, even over extended periods of time.  相似文献   

12.
Lespedeza cuneata (sericea) is an Asian legume introduced to the US in the 1930s for erosion control and forage, but it can strongly reduce the abundance of native grassland plants. One possible explanation for this high invasive capacity is that L. cuneata is able to alter soil conditions to either improve its own growth, or reduce growth of native plants. To test for soil alteration following invasion, we collected soil from a previous 3-year field experiment in which L. cuneata was established in or excluded from randomly selected plots in a restored grassland. These soil history treatments were crossed with soil autoclaving—to disrupt microbial communities potentially important to plant interactions. For each treatment combination, a native plant, Sorghastrum nutans, was grown with L. cuneata or a conspecific in a 12-week greenhouse experiment. Although we found no evidence for competitive effects on the native species, L. cuneata biomass increased when grown in soil with a L. cuneata history as opposed to non-invaded soil (F 1, 16 = 4.79, P = 0.04). Additionally, nodulation of L. cuneata increased in invaded compared to non-invaded soil (F 1, 16 = 6.01, P = 0.026). These results indicate that, within three years of invasion, L. cuneata is able to alter soils to facilitate its own growth and suggest that at least part of the invasive success of L. cuneata is linked to altered soil conditions.  相似文献   

13.
Ecological restoration of former agricultural land can improve soil conditions, recover native vegetation, and provide fauna habitat. However, restoration benefits are often associated with time lags, as many attributes, such as leaf litter and coarse woody debris, need time to accumulate. Here, we experimentally tested whether adding mulch and logs to restoration sites in semi‐arid Western Australia can accelerate restoration benefits. All sites had been cropped and then planted with native trees and shrubs (i.e., Eucalyptus, Melaleuca, and Acacia spp.) 10 years prior to our experiment, to re‐establish the original temperate eucalypt woodland vegetation community. We used a Multi‐site Before‐After‐Control‐Impact (MBACI) design to test the effects on 30 abiotic and biotic response variables over a period of 2 years. Of the 30 response variables, a significant effect was found for just four variables: volumetric water content, decomposition, native herbaceous species cover and species richness of disturbance specialist ants. Mulch addition had a positive effect on soil moisture when compared to controls but suppressed growth of native (but not exotic) herbaceous plants. On plots with log additions, decomposition rates decreased, and species richness of disturbance specialist ants increased. However, we found no effect on total species richness and abundance of other ant species groups. The benefit of mulch to soil moisture was offset by its disbenefit to native herbs in our study. Given time, logs may also provide habitat for ant species that prefer concealed habitats. Indeed, benefits to other soil biophysical properties, vegetation, and ant fauna may require longer time frames to be detected. Further research is needed to determine whether the type, quantity, and context of mulch and log additions may improve their utility for old field restoration and whether effects on native herbs are correlated with idiosyncratic climatic conditions.  相似文献   

14.
The subalpine forest and grassland ecosystems at Tatajia in Yushan National Park, Taiwan, at an elevation of 2,700 m, mean annual precipitation of 4,100 mm, mean annual temperature of 9.5°C, and soil pH near 3.5, represent land types whose bacterial communities have not been previously characterized. To this end, small subunit (SSU) rRNA libraries were prepared from environmental DNA, and 319 clones were sequenced and characterized. Despite differences in vegetation, Acidobacteria, Proteobacteria and Firmicutes were the most abundant phyla in soil communities from the forest and grassland. Although not significantly different, on the basis of Chao1, Shannon and other indices and rarefaction analyses, the diversity of the bacterial community of grassland appeared higher than that of the forest. The composition of the most abundant operational taxonomic units (OTUs) also differed between the grassland and forest communities. Because the grassland was formed by fire 30 years ago from forest, these results indicated a different bacterial community could form within that time. Moreover, most of the OTUs abundant in Tatajia soils had been previously detected in other studies, but in lower numbers. Therefore, the bacterial communities in Tatajia differed in relative abundance but not in types of bacteria present. However, one acidobacterial OTU abundant in Tatajia had previously been found to be abundant in soils from around the world. Thus, this OTU may represent a particularly abundant and cosmopolitan bacterial phylotype.  相似文献   

15.
In severely degraded systems active restoration is required to overcome legacies of past land use and to create conditions that promote the establishment of target plant communities. While our understanding of the importance of soil microbial communities in ecological restoration is growing, few studies have looked at the impacts different site preparation techniques have on these communities. We trialed four methods of site preparation: fire, top‐soil removal (TSR; removal of top 50 mm of soil), slashing (vegetation cut to 30 mm, biomass removed), and carbon (C; as sugar and saw‐dust) addition, and quantified resulting soil bacterial communities using DNA metabarcoding. We compared the effectiveness of these techniques to reduce weed biomass, improve native grass establishment, and induce changes in soil nutrient availability. TSR was the most effective technique, leading to a reduction in both available nutrients and competition from weeds. In comparison, the remaining methods had little or no effect on weed biomass, native grass establishment, or soil nutrient availability. Both TSR and C addition resulted in changes in the soil bacterial community. These changes have the potential to alter plant community assembly in many ways, such as via nutrient acquisition, pathogenic effects, nutrient cycling, and decomposition. We recommend TSR for ecological restoration of old‐fields and suggest it is a much more effective technique than burning, slashing, or C addition. Restoration practitioners should consider how their management techniques may influence the soil biota and, in turn, affect restoration outcomes.  相似文献   

16.
Perennial C4 grasses, especially Miscanthus sinensis, are widely distributed in the degraded lands in South China. We transplanted native and exotic tree seedlings under the canopy of M. sinensis to assess the interaction (competition or facilitation) between dominant grass M. sinensis and tree seedlings. The results of growth, chlorophyll fluorescence, and ultrastructure showed that negative effects may be stronger in perennial dominant grass M. sinensis. Although M. sinensis buffered the air temperature, improved soil structure, and increased soil phosphorus content, these beneficial effects were outweighed by the detrimental effect, especially overshading. To ensure the establishment of target native species in M. sinensis communities in degraded lands of South China, restoration strategies should include removing aboveground vegetation, planting target species seedlings in openings to reduce the effects of canopy shading, and/or selecting competition-tolerant target species. Also, seedlings of exotic species used in restoration engineering cannot be directly planted under the canopy of M. sinensis.  相似文献   

17.
Patterns of precipitation have changed as a result of climate change and will potentially keep changing in the future. Therefore, it is critical to understand how ecosystem processes will respond to the variation of precipitation. However, compared to aboveground processes, the effects of precipitation change on soil microorganisms remain poorly understood. Changbai Mountain is an ideal area to study the responses of temperate forests to the variations in precipitation. In this study, we conducted a manipulation experiment to simulation variation of precipitation in the virgin, broad-leaved Korean pine mixed forest in Changbai Mountain. Plots were designed to increase precipitation by 30 % [increased (+)] or decrease precipitation by 30 % [decreased (?)]. We analyzed differences in the diversity of the bacterial community in surface bulk soils (0–5 and 5–10 cm) and rhizosphere soils between precipitation treatments, including control. Bacteria were identified using the high-throughput 454 sequencing method. We obtained a total 271,496 optimized sequences, with a mean value of 33,242 (±1,412.39) sequences for each soil sample. Being the same among the sample plots with different precipitation levels, the dominant bacterial communities were Proteobacteria, Acidobacteria, Actinobacteria, Planctomycetes, and Chloroflexi. Bacterial diversity and abundance declined with increasing soil depth. In the bulk soil of 0–5 cm, the bacterial diversity and abundance was the highest in the control plots and the lowest in plots with reduced precipitation. However, in the soil of 5–10 cm, the diversity and abundance of bacteria was the highest in the plots of increased precipitation and the lowest in the control plots. Bacterial diversity and abundance in rhizosphere soils decreased with increased precipitation. This result implies that variation in precipitation did not change the composition of the dominant bacterial communities but affected bacterial abundance and the response patterns of the dominant communities to variation in precipitation.  相似文献   

18.
The delivery of environmental flows for biodiversity benefits within regulated river systems can potentially contribute to exotic weed spread. This study explores whether exotic plants of a floodplain forest in Victoria, Australia, are characterised by specific functional groups and associated plant traits linked to altering hydrological conditions over time. Permanently marked 20 × 20 m2 plots from five wetland sites in Eucalyptus camaldulensis floodplain forest were sampled twice, first in the early 1990s (1993–1994) and then 15 years later (2007–2008). Species cover abundance data for understorey vegetation communities were segregated by season and analysed using ordination analysis. Exotic species richness was modelled as a function of site flooding history and native species richness using general linear models. Site ordinations by detrended correspondence analysis showed differential community compositions between survey dates, but native and exotic species were not clearly differentiated in terms of DCA1 scores. Most exotics belonged to functional groups containing annual species that germinate and reproduce under drier conditions. Exotics reproducing under wetter conditions were in the minority, predominantly perennial and capable of both sexual and asexual reproduction. Site flooding history and native species richness significantly predicted exotic species richness. Vegetation changes are partially structured by reduced flood frequency favouring increased abundance of exotic, sexually reproducing annuals at drier sites. Sites of low flood frequency are more sensitive to future exotic weed invasion and will require targeted management effort. Flow restoration is predicted to benefit propagule dispersal of species adopting dual regeneration strategies, which are predominantly natives in this system.  相似文献   

19.
Changes in the soil microbial community structure can lead to dramatic changes in the soil ecosystem. Temperature, which is projected to increase with climate change, is commonly assumed to affect microbial communities, but its effects on agricultural soils are not fully understood. We collected soil samples from six vineyards characterised by a difference of about 2 °C in daily soil temperature over the year and simulated in a microcosm experiment different temperature regimes over a period of 1 year: seasonal fluctuations in soil temperature based on the average daily soil temperature measured in the field; soil temperature warming (2 °C above the normal seasonal temperatures); and constant temperatures normally registered in these temperate soils in winter (3 °C) and in summer (20 °C). Changes in the soil bacterial and fungal community structures were analysed by automated ribosomal intergenic spacer analysis (ARISA). We did not find any effect of warming on soil bacterial and fungal communities, while stable temperatures affected the fungal more than the bacterial communities, although this effect was soil dependent. The soil bacterial community exhibited soil-dependent seasonal fluctuations, while the fungal community was mainly stable. Each soil harbours different microbial communities that respond differently to seasonal temperature fluctuations; therefore, any generalization regarding the effect of climate change on soil communities should be made carefully.  相似文献   

20.
The restoration of disturbed ecosystems is challenging and often unsuccessful, particularly when non‐native plants are abundant. Ecosystem restoration may be hindered by the effects of non‐native plants on soil biogeochemical characteristics and microbial communities that persist even after plants are removed. To examine the importance of soil legacy effects, we used experimental restorations of Florida shrubland habitat that had been degraded by the introduction of non‐native grasses coupled with either mechanical disturbance or pasture conversion. We removed non‐native grasses and inoculated soils with native microbial communities at each degraded site, then examined how habitat structure, soil nitrogen, soil microbial abundances, and native seed germination responded over two years compared to undisturbed native sites. Grass removal treatments effectively restored some aspects of native habitat structure, including decreased exotic grass cover, increased bare ground, and reduced litter cover. Soil fungal abundance was also somewhat restored by grass removals, but soil algal abundance was unaffected. In addition, grass removal and microbial inoculation improved seed germination rates in degraded sites, but these remained quite low compared to native sites. High soil nitrogen persisted throughout the experiment regardless of treatment. Many treatment effects were site‐specific, however, with legacies in the more degraded vegetation type tending to be more difficult to overcome. These results support the need for context‐dependent restoration approaches and suggest that the degree of soil legacy effects may be a good indicator of restoration potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号