首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matching blood flow to myocardial energy demand is vital for heart performance and recovery following ischemia. The molecular mechanisms responsible for transduction of myocardial energetic signals into reactive vasodilatation are, however, elusive. Adenylate kinase, associated with AMP signaling, is a sensitive reporter of the cellular energy state, yet the contribution of this phosphotransfer system in coupling myocardial metabolism with coronary flow has not been explored. Here, knock out of the major adenylate kinase isoform, AK1, disrupted the synchrony between inorganic phosphate P(i) turnover at ATP-consuming sites and gamma-ATP exchange at ATP synthesis sites, as revealed by (18)O-assisted (31)P NMR. This reduced energetic signal communication in the post-ischemic heart. AK1 gene deletion blunted vascular adenylate kinase phosphotransfer, compromised the contractility-coronary flow relationship, and precipitated inadequate coronary reflow following ischemia-reperfusion. Deficit in adenylate kinase activity abrogated AMP signal generation and reduced the vascular adenylate kinase/creatine kinase activity ratio essential for the response of metabolic sensors. The sarcolemma-associated splice variant AK1beta facilitated adenosine production, a function lost in the absence of adenylate kinase activity. Adenosine treatment bypassed AK1 deficiency and restored post-ischemic flow to wild-type levels, achieving phenotype rescue. AK1 phosphotransfer thus transduces stress signals into adequate vascular response, providing linkage between cell bioenergetics and coronary flow.  相似文献   

2.
Genetic studies of the adenylate kinase (AK) polymorphism   总被引:1,自引:0,他引:1  
K Berg 《Human heredity》1969,19(3):239-248
  相似文献   

3.
4.
5.
Our goal was to determine whether mice genetically altered to lack either creatine kinase (M/MtCK(-/-)) or adenylate kinase (AK(-/-)) show altered properties in the dynamic regulation of myocardial oxygen consumption (MVO(2)). We measured contractile function, oxygen consumption, and the mean response time of oxygen consumption to a step increase in heart rate [i.e., mitochondrial response time (t(mito))] in isolated Langendorff-perfused hearts from wild-type (n = 6), M/MtCK(-/-) (n = 6), and AK(-/-) (n = 4) mice. Left ventricular developed pressure was higher in M/MtCK(-/-) hearts (88.2 +/- 6.8 mmHg) and lower in AK(-/-) hearts (46.7 +/- 9.4 mmHg) compared with wild-type hearts (60.7 +/- 10.1 mmHg) at the basal pacing rate. Developed pressure fell slightly when heart rate was increased in all three groups. Basal MVO(2) at 300 beats/min was 19.1 +/- 2.4, 19.4 +/- 1.5, and 16.3 +/- 1.9 micromol x min(-1) x g dry wt(-1) for M/MtCK(-/-), AK(-/-), and wild type, respectively, which increased to 25.5 +/- 3.7, 25.4 +/- 2.6, and 22.0 +/- 2.6 micromol. min(-1) x g(-1), when heart rate was increased to 400 beats/min. The t(mito) was significantly faster in M/MtCK(-/-) hearts: 3.0 +/- 0.3 versus 7.3 +/- 0.6 and 8.0 +/- 0.4 s for M/MtCK(-/-), AK(-/-), and wild-type hearts, respectively. Our results demonstrate that MVO(2) of M/MtCK(-/-) hearts adapts more quickly to an increase in heart rate and thereby support the hypothesis that creatine kinase acts as an energy buffer in the cytosol, which delays the energy-related signal between sites of ATP hydrolysis and mitochondria.  相似文献   

6.
The sequence analysis of adenylate kinase isoenzyme 2 (AK2) was completed using a gas-phase sequencer constructed in our laboratory. The enzyme contains 238 amino acid residues in the following order: (sequence; see text) The four cysteine residues of AK2 were reinvestigated. Cys-41 and Cys-233 contain free thiols, which can be carboxymethylated in the intact protein without loss of enzymic activity. Chemical and model-building studies suggest that the pair Cys-43/Cys-93 forms a disulfide in native AK2. The relative molecular mass of AK2, as deduced from the sequence, is 26104. Other methods, including titration of -SH groups, sedimentation equilibrium ultracentrifugation and gel filtration yielded Mr values in the range from 26 000 to 31 500, each value depending on the respective method of determination. Bovine heart AK2 contains 44 residues more than the homologous isoenzyme AK1 (myokinase). As all but one single insertions and deletions cancel, the higher Mr of AK2 is due to 9 residues preceding the N terminus of AK1, a stretch of 30 residues in the middle of the molecule and 6 residues at the end. AK2 and AK1 are similar in their active-site geometry. In contrast, AK2 does not possess any of the three antigenic sites of AK1, which is consistent with the lack of immunological cross-reactivity between AK1 and AK2.  相似文献   

7.
An attempt has been made to determine the intracellular distribution of the multiforms of the adenylate kinase (AK) isoenzymes in mammalian tissues, to shed some light on their physiological roles, especially in energy metabolism. The adenylate kinase zymograms obtained from isoelectric focusing yielded two typical isoform patterns: (1) with a pI greater than or equal to 9 and 8.6, specific for bovine skeletal muscle, heart, aorta and brain, and (2) with a pI = 7.9 and 7.1, specific for liver and kidney. Pattern (1) was attributed to the cytosolic isoenzyme (AK1) as demonstrated by immunostaining with anti-AK1. Pattern (2) was attributed to the mitochondrial isoenzyme (AK2). These results were largely confirmed by chromatofocusing experiments. The AK1 isoenzyme was partially purified from the cytosol fraction of bovine aortic smooth muscle and had an apparent Mr of 23.5 kilodaltons. Its kinetic features are discussed from a comparative standpoint. Finally, the human serum AK1 isoform was also detected by Western blotting with a monoclonal antibody directed against crystalline porcine muscle AK1. These results are to form the basis of further studies on the 'aberrant' adenylate kinase isoenzyme from the serum of Duchenne muscular dystrophics.  相似文献   

8.
9.
10.
11.
G Xu  P O'Connell  J Stevens  R White 《Genomics》1992,13(3):537-542
We have isolated cDNA clones for human adenylate kinase isozyme 3 (AK3) with a genomic probe from the neurofibromatosis type 1 (NF1) region. Three overlapping clones isolated from a human frontal-cortex cDNA library gave rise to a consensus sequence of 1.7 kb. The open reading frame identified in this sequence predicted a peptide of 223 residues. A database search revealed striking homology, about 58% amino acid sequence identity, between this predicted protein and bovine AK3. Human AK3 protein also showed significant homology to other members of the adenylate kinase family isolated from various species. Genomic Southern analysis suggested that multiple AK3 loci exist in the human genome, including one located in an intron of NF1 on chromosome 17. The chromosome-17 locus appears to be a processed pseudogene, since it is intronless and contains a polyadenylate tract; it nevertheless retains coding potential because the open reading frame is not impaired by any observed base substitutions.  相似文献   

12.
13.
14.
The mitochondrial isoenzyme of creatine kinase (MiMi-CK) was separated by affinity chromatography on Cibachrome-Blue-Sepharose (Sepharose-Blue, Pharmacia). While the soluble CK isoforms (BB-CK and MM-CK) were specifically eluted by raising the pH of the column buffer from pH 6.0 to pH 8.0, MiMi-CK remained bound under these conditions but was specifically eluted by subsequent addition of ADP to the pH 8.0 buffer. This one-step method allows a fast and efficient separation of MiMi-CK from MM-and BB-CK isoenzymes and at the same time an enrichment of MiMi-CK by about 50-fold. Since MiMi-CK can be assayed separately after isolation by affinity chromatography on Sepharose-Blue, this method may be of clinical importance.  相似文献   

15.
Regulatory regions of the mouse muscle creatine kinase (MCK) gene, previously discovered by analysis in cultured muscle cells, were analyzed in transgenic mice. The 206-bp MCK enhancer at nt-1256 was required for high-level expression of MCK-chloramphenicol acetyltransferase fusion genes in skeletal and cardiac muscle; however, unlike its behavior in cell culture, inclusion of the 1-kb region of DNA between the enhancer and the basal promoter produced a 100-fold increase in skeletal muscle activity. Analysis of enhancer control elements also indicated major differences between their properties in transgenic muscles and in cultured muscle cells. Transgenes in which the enhancer right E box or CArG element were mutated exhibited expression levels that were indistinguishable from the wild-type transgene. Mutation of three conserved E boxes in the MCK 1,256-bp 5' region also had no effect on transgene expression in thigh skeletal muscle expression. All these mutations significantly reduced activity in cultured skeletal myocytes. However, the enhancer AT-rich element at nt - 1195 was critical for expression in transgenic skeletal muscle. Mutation of this site reduced skeletal muscle expression to the same level as transgenes lacking the 206-bp enhancer, although mutation of the AT-rich site did not affect cardiac muscle expression. These results demonstrate clear differences between the activity of MCK regulatory regions in cultured muscles cells and in whole adult transgenic muscle. This suggests that there are alternative mechanism of regulating the MCK gene in skeletal and cardiac muscle under different physiological states.  相似文献   

16.
Summary The distribution of the adenylate kinase groups was studied on blood samples obtained from 2270 Swiss individuals. The distribution was found to be in excellent agreement with the Hardy-Weinberg equilibrium. The obtained gene frequencies were similar to those observed in other Caucasian populations (AK1=0.957, AK2=0.043). In 335 mother/childpairs no theoretically impossible combinations were found. No significant difference was observed between the gene-frequencies of men and women. Among the blood samples investigated an unusual phenotype was found in one mother and her child.  相似文献   

17.
18.
19.
Stimulation of the type 1 IL-1R (IL-1R1) and the IL-18R by their cognate ligands induces recruitment of the IL-1R-associated kinase (IRAK). Activation of IRAK leads in turn to nuclear translocation of NF-kappaB, which directs expression of innate and adaptive immune response genes. To study IRAK function in cytokine signaling, we generated cells and mice lacking the IRAK protein. IRAK-deficient fibroblasts show diminished activation of NF-kappaB when stimulated with IL-1. Immune effector cells without IRAK exhibit a defective IFN-gamma response to costimulation with IL-18. Furthermore, mice lacking the Irak gene demonstrate an attenuated response to injected IL-1. Deletion of Irak, however, does not affect the ability of mice to develop delayed-type hypersensitivity or clear infection with the intracellular parasite, Listeria monocytogenes. These results demonstrate that although IRAK participates in IL-1 and IL-18 signal transduction, residual cytokine responsiveness operates through an IRAK-independent pathway.  相似文献   

20.

Background  

The heart is capable of maintaining contractile function despite a transient decrease in blood flow and increase in cardiac ATP demand during systole. This study analyzes a previously developed model of cardiac energetics and oxygen transport to understand the roles of the creatine kinase system and myoglobin in maintaining the ATP hydrolysis potential during beat-to-beat transient changes in blood flow and ATP hydrolysis rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号